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A COMPARISON OF NUMERICAL METHODS FOR IDENTIFICATION

AND OPTIMIZATION PROBLEMS INVOLVING CONTROL SYSTEMS WITH DELAYS

H.T. Banks, J.A. Burns and E.M. Cliff

ABSTRACT

In this report we present numerical results for two approximation

techniques for functional differential control systems. One technique is

based on an averaging scheme, the other on spline approximations. A number

of examples are considered and the techniques are applied to parameter

estimation problems and optimal control problems where the systems are given

by differential equations with hereditary terms.
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if 1. Introduction.

This report is devoted to a detailed study, via numerical

J- experiments, of certain algorithms for the control and identification

of linear hereditary systems. In particular, we shall consider two1
schemes ("averaging" and linear "spline" approximations) which are

based on the general approximation method developed in [I, [21

'37, "5". The purpose of this report is to present examples which

facilitate a comparison of the numerical performance of these two

schemes for parameter identification and for optimal control pro-

blems. We shall not dwell upon theoretical convergence results.

The interested reader is referred to [5 ] for complete statements

i f convergence results, error estimates and detailed proofs.

2. Notation and vroblem formulation.

The following notation will be used throughout the paper. For

n
- < a < b < + w, L (a,b;R ) is the usual Lebesque space of equl-

p
valence classes of all functions x:ab]- Rn such that 1x1p is in-

tegrable. Let g = [O,r] where r > 0 is a fixed real number, and

Z will denote the Hilbert space Z X L2 (-r,0;Rn). For

0 < T e r, the space Rn X L2(-TO;Rn) will be denoted by Z(T). The

Sobolev space W (1)(-r,O;R n ) consists of all functions in L2 (-r,0;Rn)

with derivatives also in L2 (-r,O) and norm given by

2 2c~ •2. We assume that and S are compact con-

w 2  2 2
vex subsets of R4 and Z, respectively. Moreover, S is assumed to

have the property that if Y E S and 0 < T < r, then the projected

function

hLA-A
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(2.0) s ( )  r" S< _,

also belongs to S.

II Let Q = x 14 and r = s x Q, so that a generic element of r has

the form y = (,,cp,q) ( The elements y of 7 are called

the system parameters. We assume that for each U E 0, A0 (t), A 1 (Q)

belong to Rnxn, B(oe) E RnXm C(a) E RkXn D(a) t Rk Xm a

is an n x n matrix valued function with columns in L2 (-r,0;R )

If x:[--, + w) Rn and t - 0, the function xt :C--,0 -R is

defined by x t(s) = x(t+s). For q = (0eT) E Q, the operator L(q) i.:

defined by

0
L(q)cp = AO(c)p0 ) + AI(CO) 0(-, ) + K(Q1,s)cp(s) ds.

-I"

We consider the system governed by the linear retarded functional

differential equation

(2.1) c(t) L(q)x t + B(ce)u(t), t k 0,

with initial data

(2.2) x(O) = , x0 =

and output

(2.3) y(t) QC(v)x(t) + D(c)u(t) :

[.
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where u is a Rm - valued, locally integrable control function and

(.Th,) E Z. Given a control u and y E r, the solution of the initial

value problem (2.1)-(2.2) at time t will be denoted by x(t;y,u).

The corresponding output to (2.1)-(2.3) at time t t 0 will be denoted

by y(t;y,u).
2

REMARK. Note that the initial function p need only be defined

on [-T,O]. If T < r and rp E L2 (-T,O;Rn) we shall identify cp with

the projected function E L2 (-r,O;R
n ) defined by (2.0). With

this understanding, any function in L2 (-T,o;Rn) is also an element

of L2 (-r,O;Rn). Consequently, for notational convenience we shall

not distinguish between CP E L2 (-T,o;R
n ) and cp E L2 (-r,0;Rn).

We shall be concerned with the system on a fixed finite interval

[0,T] where T > 0. The matrices G and W are n x n symmetric positive

semi-definite, R is an m x m symmetric positive definite matrix and

k
Yl' Y21 -' YM are given "observations" in R at times t,

0 t1 < t2 < ... < t M s T. The above notation is summarized in

the following list of nomenclature:

S x Q = S3x X Parameter set

y = (J,,q) = (TjccY,T) - System parameters

G, W --------------------------- Symm. positive semi-definite

R ------------------------------ Symm. positive definite

T ------------------------------ Fixed final time
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0 t1 < ... < t M T -------------Observation times

y'l' Y2' ** YM -------------------Observations.

We now formulate two infinite dimensional optimization problems

associated with the hereditary system described above.

The identification problem may be stated as follows:

eEPROBLEM (ID). Given the control uin L(0,T;:R7)rAnd observations

tefit error

M 2

where yEty yu is ___t ____ 
__ _________

whee ~t'Yu)ist eY: output to 2.).(2.3), and the minimization

takes place over r.

The optimal control problem may be stated as follows:

PROBLEM (OC). Given the system Parameters Y E r, find a

contol u* in L 2 (,T;R7) which minimizes the Performance criterion

(2.5) 3(u) -Kx T T)Gx(T)J+ (T sWxs usRu))d,

0

where x(t) x(t;y,u) is the solution to the system (2.1)-(2.2).

The oiptimal cost will be denoted hX 3* (i.e. 3* = J(u*)).
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It should be noted that the above formulation of the identifi-

7cation problem allows for the case where some of the system para-

meters y = ( ,C,,T) are known.

ii

A

" 1

jj L
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3. ' The abstract Cauchy problem and approximations.

In order to implement any numerical algorithm for solving the

identification and optimal control problems, it is necessary to in-

troduce approximations at some stage of the solution process.

The basic idea used in this paper is to approximate the hereditary

system by an ordinary differential system. We give a brief outline

of the general framework and present two particular schemes. Details

of the method may be found in r2l, r3] and 751 .

It is helpful to formulate the hereditary system (2.1)-(2.3) as

an abstract system in the Hilbert space Z. Although this formulation

is not essential if one is concerned only with numerical results, it

is informative and indeed necessary if one is to fully understand

the basic ideas underlining the methods to be discussed here.

Given q = (t,'r) EQ x 3j, define for t > 0 the mapping

S(t;q):Z()- Z(T) by

S(t;q)(j1,t) =(%(t;q), x ti.;q))

where x(.;q) is the solution to the homogeneous equation x(t)- L(q)x t

with initial condition (x(O),xo) 0 (m,). It is well known that for

each fixed q,fS(t;q))t 0 is a Co-semigroup on Z(T) (see [2i, [3).

Moreover, the infinitesimal generator of (S(t,q))t 0 is the operator

Cj(q) defined on the domain

0(a(q)) - C(p) E Z(T) CP E W(1) (-,;R n ) () = ( ]

2

by
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Define S(q): Rm- Z(i-) and C(q):Z(T) .Rk by 33(q)u =(B(ce)u,O)

and c(q) ,cp) =C(ct)T, respectively. Corresponding to the hereditary

system (2.1)-(2.3) we have the abstract (ordinary differential)

system in Z(T)

(3.1) (t) = a(q)z(t) + S(q)u(t),

(3.2) Z(Q) = Q,cp),

(3.3) y(t) = C(q)z(t) + D(a) u(t)

A mild solution to (3.1)-(3.2) is given by the variation of para-

meters formula

(3.') z(t;y,u) - S(t;q)(j~q) + S S(t-s;q)B(q)u(s) ds.

0
The following result is fundamental for all the approximation

methods we consider. Its proof may be found in r41

THEOREM 3.1. Suppose that y =(139c,q) E r and u E L2(0,T; Rm).

If x(t;,y,u) denotes the solution to the hereditary equation (2-1)-i

(2.2), then z defined y (3.4) satisfies

(3.5) z(t;y,u) = (x(t;y,u),xt (.;y,u))

for all t k 0. In particular, the output to the abstract system

(3.1)-(3.3) is the same as the output to the hereditary system (2.1)-
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It is clear from the above equivalence that the hereditary

system (2.1)-(2.3) can be approximated by approximating the abstract

system (3.1)-(3.3). In order to approximate (3.1)-(3.3), it follows

from the formula (3.4) and the equivalence (3.5) that one must

approximate the following;

i) the initial data ( ,c)

ii) the semigroup (S(t;q)3t 0 ,

iii) the operators B(q), C(q).

* The approximation of the initial data is accomplished by projecting

(' ) onto a finite dimensional subspace of Z(r). In order to

approximate S(t;q), recall that S(t;q) is an evolution operator

which is sometimes written

S(t;q) = ea(q) t

even though CZ(q) is unbounded. However, this (formal) identification

illustrates the basic idea; S(t,q) is approximated by approximating

Q(q). Similarly, we must approximate fi(q, and C(q). Consequently,

we construct approximating systems to (3.1)-(3.3) (and hence (2.1)-

(2.3)) by

I) projecting (',p) onto some finite dimensional sub-

space of Z('),

and

2) approximating the operators a(q), R(q) and C(q).

Although the above remarks are based on formal ideas, the
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j steps outlined above can be effected in a rigorous mathematical

framework. We shall not attempt to develop the relevant theory in this

* paper; rather we refer the interested reader to r5".

We turn now to the two particular schemes that we have tested

i" rather extensively on a number of numerical examples. The first method

(AVE) is based on step-function approximations to the initial function

,* " , while the second method (SPLINE) is based on linear spline

approximations to c.

AVE; Corresponding to the partition tN.  j  0,1,...,N, of

[- ,O,we define the subspace ZN (T [(n,) E Z( ) I is a constant

N N Non each of the subintervals Et., tj )). Let PA (r) be the orthogonal

projection of Z(r) onto the closed subspace ZA(T). In particular,

PN ( (, 0N)

with

N N N N

j=l

N N N N
where Xj(s) is the characteristic function for ItN, t.l) and j is

the mean (average) value

tNN=N j-1
NP N j (s) ds

N
t.
J

j 1, 2, ... N. We take (,y N) for our approximation to the

initial data ( ,'). To approximate Q(q), observe that the first1
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coordinate of Q(q)(y) is simply L(q)y and the second coordinate is

Let K () be defined by

N
N t-i 0N

K K(ci, s) ds K(y, s) x1 (s) ds

N -r

! N N N N N N
and suppose that (v0,) = (v0 , E Vx) belongs to Z (i). Define

LN(q) and DN (q) by 
j=1 j 

A

N NN N N

LN(q) ( v') 
= Ao(a) VN + AI(Ce)VN + K.(Ce)vN

j=l
and

N N N
N NN NV N

DlN (q)(vo'o) 

(1v-v 
V j .

The operator Q(q) is approximated by the finite dimensional operator

(q) on ZN (r) defined by

A

SN (q)(V,*) = (LN(q)(v0,r), DN (q)(v O , ))

If an appropriate basis for ZN (T) is selected, then RCN+l)n

can be identified with ZA (r) and the above scheme leads to the
A

following approximating system. For N I 1 define the [(N+l)n]x [(N+l)n]

N
matrix A (q) by

I

....



II

A A0(CO 0 K(of) . . . c) A10+4CY

I

S-I0 0NN -N

(3.6) AN(q) 0
ST.

0N0-1 -N j

where I is the n x n identity matrix. The £(N+l)nl x m matrix

B N(q) and the k x [(N+l)n] matrix C N(q) are defined by

0
(3.7) BN(q) = and C N(q) =C(oy) 0 ... 0

0

respectively.

The approximating ordinary differential system (of dimension

(N+l)n is given by

(3.8) zN (t) = A N(q)z N(t) + B N(q)u(t)

(3.9) zN(o) = z

N N N(3.10) y (t) = C (q)z (t) + D(t)u(t)
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N, N (-0

where zN = col(,l, 1...,CPN). The approximate system (3.8) - (3.10)

will be referred to as the AVE approximation to (2.1) - (2.3).

SPLINE: Corresponding to the partition t .  N'*, j 0,1,...,N,

of r--,O] we define the subspace Z (r) = ((),p) E Z(T)Jp is a first

order (viecewise linear) spline function with knots at t N -. ,N.).

N N I=OI

Let PS(-() be the orthogonal projection of Z(T) onto Zs (). Note

that if (IMp) E Z(T), then PS(r)(,V) belongs to p(a(q)). One cau

argue that P ()(],c) - (r, p) as N - +w and hence it is not Un-

reasonable to expect that for (-i,y) E Q((q))

lim P N(r) O(q)P N(r)(I,cp) = N(q)(,.p)
S S

Consequently, we define yN (q):ZN(T) - ZN () by

(3.11) 0 N (q) = PN() (q) PN(T).

NIn order to represent the operator 2 (q) and construct an

ordinary differential system in Euclidean space, we follow the

general outline given by Banks and Kappe] r8-. Let ejj=Ol,...,N

denote the scalar first order spline function on I-T,O] characterized

by

e (t = 6ij, i, j = 0, 1, ... N

where & is the Kronecker symbol. The matrix BN = tBl,"'SN+I ]

defined by

N N N NB e0, e19 ..., e N®II."" i
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(where S denotes the Kronecker product) is such that the st

N N N
8j (J () J

j 1,2, ...,N+I, forms a basis for ZS () With this basis Z
SS

is identified with R (N+ l )n and the following system may be con-

structed.

4 N
Let Q (q) be the [(N+l)n] x [(N+l)n] matrix

1 2 1
6 3 6

(3.12) QN (q) = y* L

o 1 2 1
6 3 b

o .. o I I
6 3

and

(3.13) H N (q) N N (q) + ,N(q)

where

H. i(q) and H (q) are [(Nlf)nj x L(N+1)n] matrices defined by

I
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Ao(af)+K cr (G(O ~ (Q) A1 (00±+(00
0v

0 0
(3.14) H N (q)

i( 0

with
0

N N
K.()= K(a,s) e (S) ds

-r

and

k\
0 -

N

02.15) H2(q) 0

It follows (see E8) that C1N (q) = P N (T )C, (q P N ()has the
S S

C(N+l~nJ X [(N-e-)n] matrix representtoLnII



IN N -1 qN(3.16) A(q) [Q (q)] H(q

Define the £(N+1)nj x m matrix BN(q) and the k x [(N+l)nJ matrix

CN (q) by

B (c')

(3.17) -N~q =QN (q 1  0 and (q) r '

0

N Nrespectively. Any vector z 2NL(T) can be written as

ZN N Ne(O, NN

j=0 J~ ii

~N nN Nwh ere F E Rn. Thus, the vector z E Z S('r) can be idetitieid with Liie

N N N (N+1)n
vector co('l -t in R

The approximating ordinary differential system becomes

(3.8)z (t) AN (q) zN(t) B I (q)u(t)

(3.9)N N
(3.20) yN '--N N

(3.20) y (t) = C (q )wN(t) + D(ct)u(t)

weezN is the vector in R (N+1)n ietfdwthPN (MC) zN(')
0S

We shall rc'ter to the system (3.18) - (3.20) as Liu' SPINE approximatioll

scheme for (2.1) - (2.3).

REMARK. When making computations involving the spline system

(3.18)-(3.20) one never actually computes EQN (q)]- but rather
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solves

N N N N[Q (q)]w = H (q)v

directly in order to obtain w AL(q)vN.

Both of the above schemes (AVE and SPLINE) fall within the

general theoretical framework presented in r5 1, where convergenLE.

results and error estimates are given.

4. The approximating problems.

The system (3.8)-(3.10) will be called AVE and the system

(3.18)-(3.20) will be called SPLINE. Both are ordinary differential

systems (of dimension (N+l)n) that approximate the dynamical

response of the hereditary system (2.1)-(2.3). In order to state"

an approximating identification problem, we must approximate the

constraint set F.
N• NSuppose that y = (jp,q) E I and that PN(T)(j,) and PN

have the representations in R (N+ l )n given by

N (,CN' .(N

N N N N
P S(T)(O,§ N

Let N and rN denote the mappings from Z x & x R to (N)n ux R

defined by

riN( 'c,,,'r )= (PN(T)(j,Cp),CV,,r)

and

[.
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1
N,. (TI,, ,,T (P N- rS N

I Thus motivated, we choose the approximating constraint sets as
_ N N ,N

N A r and 7 N = NF. For each of the systems (3.8) - (3.10) andA S "S
(3.18) - (3.20) we have the following approximating parameter ident-

ification problem:

PROBLEM (IDN). Given the control u in L 2(0,T;Rm) and obser-

*- k IN N N Nvations yi E R at times t., find the parameters A E 'A ( 2 N)

which minimizes the fit error

NN N N N2(4.1) E ( N )= y (ti;Y ,u) -Yi

where y N(t;yN, u) is the output to the AVE system (3.8)-(3.10)

(SPLINE system (3.18)-(3.20)), and the minimization takes place

over IN (over 7)Nov_. A  "S )

Given a parameter y = (7.9,,w,), one may construct the

* approximating systems AVE and SPLINE, corresponding to y. Let

and W be the (N+l)n squar matrices defined by
I a
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* 1w

G 0 0 1
0 o .

N I

0 0 0

and -

W 0 0

0 0
N.W =

o 0 0

I ,

For each of the approximating systems AVE and SPLINE we have

the following approximating optimal control problems:

PROBLEM (OCN). Given the system parameters y E r, find a

control u" (Us) in L (C,T;Rm) which minimizes the performance

criterion 1

" T

(4.2) J N~ [(zN (T)) TG N zN (T)] + S ((zN(s))TW~zN(s)+uT (s)Ru (s))ds,
0

where zN (t) z N(t;y,u) jA he solution I& tL& &U sste m (3.8)-

(3.10) (SPLINE system (3.18)-(3.20)). The optimal cost will be

denoed by 3 N(i IN= jN(N)). [
d e
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For each N, the approximating identification and optimal

control problems are now finite dimensional in the sense that the

dynamical systems AVE and SPLINE are governed by ordinary differ-

ential equations in R(N~l)n. The basic idea is to solve (for

N N Nfixed N) each of these problems to obtain A, u and uS . It
to * ad -N - to (se 1 ^Nccan be shown that under reasonable conditions i N and ^ N

"converge" to y* anduA and uS converge to u* (see C 5 ] for a pr(,

cise statement of the r~sults).

The remainder of this paper is devoted to the study of numer-
N N ^ N N

ical examples. In particular, we compute YA'YS' A and uS  and

compare these values with the optimal values y* and u* for a

number of hereditary systems. In doing so, we hope to demonstrate

that the method is feasible to implement and that acceptable con-

vergence rates are obtained.

All of the numerical results presented in the next sections

were produced by computer programs written at Virginia Tech and

Brown University. The identification problems were run at Virginia

Tech on an IBM 370/158 computer. A maximum likelihood (least

squares) algorithm was used to solve the approximating problem (IDN).

A complete discription of the method and listing of the code may be

found in the report 19]. The optimal control problems were run at

Brown University on an IBM 360/67 computer. For both the linear

and nonlinear control examples a conjugate-gradient minimization

algorithm (as described in [ 1 ) was used to solve the approximating

problem (OCN).

i



-20-

5. Numerical solutions to the identification problem.

In this section we present a number of numerical results for

the identification problem (PROBLEM (ID)), that are based on the

approximation schemes (AVE and SPLINE) outlined in the previous

sections. In order to generate most of the data for testing the

algorithm we select a "true" set of parameters y*= (T*, *,&*,r*) ii
and a control u and use the method of steps '11' to solve for x

on the interval r0 ,T,.

In all of the examples presented below we used T* 1 and

u = u,, where u, is the unit step at t =  defined by

0 t < t

ut(t) I :
it W t

and 0 < t, < 1. The final time of T 2 was used in most of the

examples (except 05.1). The observations yi = Y(ti) were gencrated

at 101 equally spaced time steps on [0,T]. In some examples noise

was added to the model to produce "noisy observations"

7(t) y(t) + M(t)

where ,(t) = col(vl(t),... (t)) is a computer simulated vector

of normal random variables vi(t) (routine GGNQF of the IMSL library, i.

see IMSL Users Guide), each with zero mean and preset standard

variation. U

11



iI
-21-

I For each fixed N, the approximation Problem (IDN) was solved

using a maximum likelihood estimator (MLE). Since the MLE is an

iterative procedure it is necessary to supply a startup (i.e. an
: ^N N

initial guess) for the optimal parameter y (or S for the spline

scheme). If B denotes an unknown parameter to be estimated (i.e.

~1 NI
o' or = T, etc), then BN

' will denote the estimate for N

obtained after I iterations of the MLE applied to PROBLEM (IDN).

The startup value will be denoted by

It is helpful to understand the numbering system for the

identification examples. The first two characters in the example

number indicate what model is used for the generation of data. The

number after the decimal point refers to the specific numerical

run. For example, all "S2" examples are problems where the "true"

system is governed by

x(t) .05 x(t) - 4.0 x(t-l) + u W(t)

x 0 (s) 1 , -1 < s - 0

y(t) x(t)

In EXAMPLE S2.1 we assume that at = -4.0 is unknown and attempt

to estimate this parameter, while in EXAMPLE S2.2 we assume that

the time delay r* = 1.0 is unknown and estimate this parameter,

etc.

'1
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The figures are labeled at the top. In the left hand corner

the lettering indicates the example number, the value of N and the

approximation scheme. For example, S2.lN16A refers to Example

S2.1, N = 16 and the AVE procedure. The lettering in the right

htihand corner represents iteration number in the MIE algorithm.

I' €

.4
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JID MODEL S2

This is a simple scalar model with discrete delay. The

system is governed by

i(t) .05 x(t) - 4.0 x(t-l) + ul(t),

with initial data

x(0) = 1 and x0 (s) , -1 s < 0.

The output is simply the state at time t, viz:

y(t) = x(t)

As described above, this system was analytically integrated (using

the method of steps) to construct the solution on [0,2]. The

resulting solution was evaluated at 101 equally spaced points to

generate data for the following four examples; S2.1-S2.4.

-J
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EXAMPLE S2.1

In this initial example we consider the problem of identifying

a single parameter, namely the coefficient of the delayed term in

the model S2. Thus, in our parametric model the dynamics are des-

cribed by

x(t) = .05 x(t) + alx(t-l) + u (t)

with initial condition

x(0) = 1, x0 (s) 1 , -I : s < 0

and output

y(t) x(t)

For N 2, 4, 8, 16 and 32 the resulting Problems (IDN) were

"solved" using a version of the computer code described in [ 9].

Since the numerical algorithm is iterative, it is necessary to

provide a "start-up" value for a1 and in this example we used

N,0

aN = 0.0

.N
The algorithm provides a sequence of "improved" estimates for a1

and will terminate when either a maximum number of iterations is

achieved, or when the norm of the gradient of E
N is less than 10

-3

In the latter case we claim that the procedure has "converged".
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J Results of the numerical experiments for this example are

shown in Table S2.1.1. Notice that for N = 2, the AVE procedure

had not "converged" at 10 iterations, and that the SPLINE estimate

of the parameter at N =4 is better than the AVE estimate at N= 32.

By using the parameter values we can estimate the rate of

convergence as

2r ~ie Nli / Ile 2NIJ

where eN y-y* is the error. From N 2 in the SPLINE estimates

we find E! 1.7, while for N =4 in the AVE result we estimate

6 .12. Such estimates for the rates of convergence must be

viewed with caution because the numerical values are corrupted by

sources of error other than the approximation scheme.

Figures S2.1.1 and S2.1.2 show the converged data fits at

N =16 for AVE and SPLINE, respectively. The N =32 results are

essentially the same as those for N =16.

Since computer requirements are of practical interest, we

note that for N =32, the AVE algorithm took about 15 sec. per

iteration, while the SPLINE procedure required a little over 16

sec. per iteration. This comparison is not completely fair

because the majority of the code used is common to both AVE and

SPLINE and it is structured to provide the generality needed for
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the SPLINE method. A streamlined code for AVE alone might pro-

duce as much as a 20% savings in execution time.

AVE SPLINEj

-~N a 1 1e N1 N a1 le N1

2 did not converge 2 -4.1655 .1655

4 -4.1144 .1144 4 -4.0505 .0505 L
8 -4.1050 .1050 8 -4.0208 .0208

16 -4.0852 .0852 16 -4.0139 .0139

32 -4.0584 .0584 32 -4.0122 .0122

1 - 4.0000 1Y - 40000

TABLE S2.1.1
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3.00 SI 
I TR 7

I

'(t) .05x(t) + a x(t-l) + u (t)

++ data a* = -4.00

1.80 1

- AVE Model a 1 6 ' 7  -4.0852

1

* 0.60

-0. 61 +
4

+

+
+

+

+

] 

4

+ 4 
+

+ 
4

-3.00 t ! -
0.00 0.40 0.80 1.20 1.60 2.00

TIME
j FIGURE S2.1.1
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S2. I N I 6S ITR--3.00 T! - - - -- -- - 1 ... T

k(t) = .05x(t) + a x(t-1) + u 1 (t)

1.80 +++ data a* = -4.00

16,4 - 403
SPLINE Model a 4.0139

0.60

-0.61 -

~-1.81

0.00 ?fh0.0 oo0.4 0 .80 1. PO 1.0 Po .01

TIE.
FIGURE S2.i. 2
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EXAMPLE S2.2

In this example we consider the problem of identifying the

time delay alone, with all other parameters known. Thus, the

parametric model of the system is

A(t) = .05 x(t) - 4.0 x(t-r) + u (t)

with initial condition

x(0) 1 , x0 (s) 1 ,-r s < 0

and output

y(t) x(t)

As before, we conducted numerical experiments for N = 2, 4, 8,

16 and 32. Our start-up was

N,0
r .5

while the true value is of course r* = 1.0. At N - 2 and N - 4

an interesting phenomenon appeared; namely, for the start up value

of rN = 0.5 the AVE procedure "converged" and the SPLINE pro-

cedure "diverged". To examine the causes of this result we

evaluated the cost function E4 for AVE and SPLINE at a variety of

r values. The interesting results of this investigation are shown

in Figure S2.2.1. It happens that the SPLINE cost function is

more "oscillatory" than the AVE cost function for N 4. Both

i
L I
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have two local minima. However, the SPLINE cost function is such

that the start up r 4 ' 0 
- 0.5 is not in the valley of the "global"

minimum Qr .9972), while for the AVE procedure, r4'0 = 0.5 is

in the valley of the global minimum (rA = 1.2001).

When the cost function has more than a single local minimum,

the system is said to suffer a lack of (global) identifiability

(at least for the specified input). In such cases it is important

to have good start-up values for the parameters.

Table S2.2.1 illustrates the convergence for this example.

Note that for the reasons outlined above, different start-up

values were used for AVE and SPLINE. Again the results show that

for N = 2 the SPLINE algorthim gives better estimates of the

parameter r than AVE for N = 32. Figures S2.2.2 and S2.2.3 show

the N 4 data fits for AVE and SPLINE, respectively.

AVE rNO 0 .5  SPLINE rNO 0.8

N le ^N l
N "N eNI N rN eN

2 1.4603 .4603 2 1.0084 .0084

4 1.2001 .2001 4 .9972 .0028

8 1.0923 .0923 8 .9983 .0017

16 1.0439 .0439 16 .9986 .0014 I
32 1.0212 .0212 32 1.0018 .0018

r*= 1.0000 r* 1.0000

TABLE S2.2.1 1
II
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I COST N-4
225.00 rrr-I

180.00-

\N

90.00

!I--

0.00 0.40 0.80 2.00

DELAY
FIGURE S2.2.1
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3 2 2NLI -V IT-R--
3.00 I m W" 7 " I I

x(t) - .05x(t) -4x(t-r) + u (t)

1.80 +++ data r* 1.0

AVE Model r4 ,6  1.2001

4

0 +

+ +

-I .F3++

- 0 .6 1 
4-

++ +

+++ 4 ~

+ +

3 .. 
40

++

+ 4 -:

+ +
+- 4

4 + +

0. O. O1 .0.41 0. p.

FIGURE S2.2.2
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I 2D2N4S1P ITR- 5
-II

k(t) = .05x(t) - 4x(t-r) + ul(t)

.1.80 ++ data r* 1.0000

', r4,5

- SPLINE Model r .9972

. .6 1 -

-3.00 --2

0.00 0.4o 0.80 1.20 1.60 2.CO

TIME.

j FIGURE S2.2.3
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EXAMPLE S2.3

In this example we consider the problem of estimating the two

coefficients in the model. Therefore, the system is modeled by

k(t) aox(t) + alx(t-l) + ul(t)

with initial data

x(0) = I, xo(s) 1 I,-1 s < 0
0

and output

y(t) = x(t)

Numerical runs for N = 2, 4, 8, 16 and 32 were conducted. The

start-up values for a* =  .05 and a* = -4.0 were chosen to be

N,O N,0
a0  - .03 and a -3.0

Table S2.3.1 contains a summary of the estimates for both AVE and

SPLINE. The tl errors (!l0N- a I + N _ a*I) are given in Table

S2.3.2. Note that the SPLINE estimate at N z 4 is better than the

AVE estimate at N = 32.

Figures S2.3.1 and S2.3.2 show the converged data fits at

N = 16 for AVE and SPLINE, respectively. Observe that the SPLINE

procedure provides almost a "perfect" match to the data.
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AVE SPLLNE

A ,N AN AN ^N
N a0  a N a0  a

S 1.0869 -4.6236 2 .0995 -4.1639

4 .6525 -4.3160 4 .0417 -4.0523

8 .3825 -4.1660 8 .0439 -4.0222

16 .2245 -4.0898 16 .0449 -4.0151

32 .1384 -4.0505 32 .0454 -4.0133

* .0500 -4.0000 y* .0500 -4.0000

TABLE S2.3.1

AVE SPLINE

N le NI N eNI

2 1.6605 2 .2134

4 .9185 4 .0606

8 .4985 8 .0283

16 .2643 16 .0202

32 .1389 32 .0179

TABLE S2.3.2

I I
I,
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S2. 3N16R ITR- 4
3.00 I

k(t) = a x(t) + alx(t-l) + u (t)

1.80 + ++ data a* .05 a* = -4.0

16,4 16,4 .9
- AVE Model a0 '.2245 a 1 6 44.0898

0.60 1

-

-0.61 -

__ I

+++-1.81 -444I

I, I
-3.00 -------- I 4--

0.00 0.4J0 0.80 1.20 1.60 2.O0

TIME I
FIGURE S2.3.1
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S2 3N 1 6S I TR- LI 3.00 1 i 1fl

I k(t) = a x(t) + alx(t-l) + ul(t)

+++ data a* .05 a* -4.0

1-SPLINE Model a16 ,4 = .0449 a 16 ,4 = 4.01510 
1

- I

0.60

-0.61-

-1.81 -

j

0.00 0.40 0.90 . .20 1.60 2.00

jFIGURE S2.3.2
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EXAMPLE S2.4'i

This is the first example in which the "original" identification prob-

lem is truly infinite dimensional. In particular, we seek to estimate

the initial data (7,y) E R x L2 (-l, 0; R) and the coefficient of the

delayed term. Thus our model is described by the scalar equation

k(t) .05 x(t) + alx(t-l) + U W(t)

with (unknown) initial data

x(0) = , x0 (s) = c(s) , -g s < 0

and output

y(t) x(t)

For each N = 2, 4, 8, 16 and 32, the approximating problem (IDN)

was formulated as discussed in Section 4. Thus, for AVE we seek

the "parameter"

^N N N NYA 1 '9'%2' "9 %N' al 1

N N N
where (11Y,1,2,...,cp) represents the projection of the initial

data. Similarly, for SPLINE we seek the "parameter"

N N N

N N 

I.1
where ( -, ) represents the SPLINE projection of the initial

data. The "start-up" for (Jy) E R x L2 (-1, 0; R) is the zero
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initial data (0,0), while its true value is (1, 1). The

"start-up" for a* =-4 is

N,O
a1  =3.0

Table S2.4.1 provides an overview of the results. Because the

initial data is in R x L 2 (-l, 0; R) we have only displayed the

Z-norm of the error and the estimated value for a N.Tecm

parison of the two schemes is quite striking, particularly the

relative ability to estimate the initial data. Shown in Figure

S2.4.1 are graphs of the true initial data and the corresponding

estimates produced by AVE and SPLINE for N =4. It is apparent

at least for the chosen "start-up" values that the SPLINE pro-

cedure readily finds good estimates for the parameters, while the

AVE scheme has considerable difficulty.

It is interesting to compare the sequences of data fits

generated as the iteration procedure evolves. Figures S2.4.2

through S2.4.4 show the data matches from the AVE algorithm for

iterations 0, 4 and 9, respectively. From the match at iteration

4 (Figure S2.4.3) it might be deduced that AVE is in trouble. How-

ever, at iteration 9 the fit is quite good and Figure S2.4.4 does

not give any hint of the poor values of the parameters indicated

in Table S2.4.1.

Figures S2.4.5 through S2.4.7 illustrate the SPLINE data

matches at iterations 0, 4, and 9 respectively. Again the iteration
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4 matches indicate some difficulty while by iteration 9 the match

is quite good. It happens that the SPLINE estimates of the para-

meters are excellent.

Although one can not be certain, it does appear that AVE is

Nconverging to a local minimum of EN . As in example S2.2 we

suspect that the IDN problem for AVE suffers a lack of identifiability. [J

The IDN problem for SPLINE seems to be much better behaved.

In order to further investigate identifiability for problems

with unknown initial data we essentially repeated this example

with identical dynamics, changing only the initial data to

1, p(s) + s , -I r s < 0

Using the same start-ups as above we found that SPLINE converged

for all N values, whereas AVE never did. Results are summarized

in Table S2.4.2.

AVE SPLINE

aZ (0) 110N-a, 0)l* O

2 -4.4103 2.08 2 -4.4382 •.1595

4 -4.9924 4.53 4 -3.9381 .0867

8 -4.2651 41.76 8 -4.0031 .0287

16 did not converge 16 -4.0031 .0201

32 did not converge 32 -4.0001 .0386

TABLE S2.4.1

!.
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AVE SPLINIE

N a ~ ~ o~NJ N lz*(O)-^ N (0)j a

2 2 -4.5201 .0563

did t oveg 4 -4.0975 .0318

8 8 -4.0282 .0123

16 16 -4.0123 .0193

32 32 -4.0122 .0936

TABLE S2.4.2

(linear initial data)
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N =4 ESTIMATE OF INITIAL DATA
8.00 -I IF ~ ~ -

k(t) =.05x(t) + a x(t-1) + U. (t)

x(O) = ~ x (s) CPOS) /

<PA

4.80

1.60~~. ps gI,41

141

-4I . 0- . 1 .1 - .2 0

'ar R R7. _h._I
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32, 4N8FtV I TR 0
40

"T3. 0O0 1 1 1

-(t) .05x(t) + a x(t-1) + u (t)

x (O) x T, o() =  (S)

1.80
S.+++ data at= -4.0

AVE Model a8 ' 0  -3.0 -z*(O) " i8 ( / 2

0.6 + +++

-0 .6 +

*

+ +

+ 

+

F R.+ 4.

+

+0+6 - ++-
++ 

+

+ +

++ +

++ 
+

+ 4.

-1 .8 1 4.4 4.

-- ,. 
4.

+ +

.0O0 O. ,O .80 1.20 1.60 2.O00

( m FIGURE S2.4.2
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S2. 4 N8 R V I TR-3.00 [

k(t) = .05x(t) + aix(t-1) + u.l(t)

x(O) =T , Xo(s) =  o(Ps)

1.80 +++ data

- IAVE Model

0. "+

+

++ +

++
++ +

0.60 + +
+ +

of 0 +
+ +

-0 .*61 ++++++++++

-3.00-

0.00 0.140 0.80 12 .02

FIGURE S2.4.3
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S2. 4N8 RV IT R
3.00 V I I

k(t) .05x(t) + a x(t-1) + u 1 (t)

x(0) - , Xo(S) c- (s)
I0

L 1.80 +++ data a* -4. 00

- AVE Model a8 ' 9 = -4.2651 IIz*(O) - z 8 ' 9 (O)JI 41.76
1

0.60

-0.61

-1.81

-3. o I 0 0.. -
0.00 0. 40 0.80 1.20 1.60 2.00

TIME
FIGURE $2.4.4
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52. LN8SP I TR- 0
3.00I I T

i(t) = .05x(t) + a x(t-1) + ul(t)

1.80 + ++ data a* = -4.0

SPLINE Model a8,0 -3.0 11z*(O) - z8'0(0) /2

1 1

+ 
+

+ +

-0.61 ++ +

++

+ 44-

4 -
4

+ +

44

-0 .1 + +

+ +

4 4
4 4

4

+++++++

0.0 0o .4 0o .80 1. 20 1.0 2o .00I ME

FIGURE S2.4.5

-. '.. . .. . . . . _i.. = -:-:.,f-"_x ... 4.... ,4,,, , ....
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52° LIN8SP I-H: '
I3.00 T T - - -

c(t) .05x(t) + a 1 x(t-l) + U.l(t)

x(o) , Xo(s) y(s)
I0

1.801.80 + ++ data

- SPLINE Model

0.60 +
+ 

+ 

++

_ + \ .
+ 

4.

+ \+ + +

+++
++\

+ +

++

+. +4

-3. 4. -- - - -t

++ 4 '

0.00 0.40O 0.80 1.20 1,6() .t[

FIGURE S 2.4.6

+4. \
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4?o LN83P ITR- 9
3.00 T VF- F 4

k(t) =  .05x(t) + aIx(t-l) + u1 l(t)

x(O) = , x (s) = Y(s)

S0.80
18+-t-+ data a -4.0

7 I - SPLINE Model a8 '9 = -4.0031 l-z*(0) z 8 ' 9 (0)! '  .0287

0.50 

-0.61 q

/1
i

-b!

-3.00 . . . F - -- 4 -- V- A
0.00 0.40 0..1 2.00

TI M
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ID MODEL 01

This model describes a (reasonably realistic) mechanical

oscillator with retarded restoring and retarded damping forces.

The system is governed by the second order equation

R(t) + 36x(t) + 2.5 k(t-l) + 9x(t-l) = ul(t)

with initial data

x0 (s) -1 , 0 (s) 0 - s 5 0

and scalar output (which represents position)

y(t) = x(t)

This second order equation is equivalent to the two dimensional

system

__ [x(t)~ 0 l1 x(t) 0 0 x2 tl 0L t 36  0Lx2 ()IL9 -2.5jxL2(t-lJ L 1 (
with initial condition

(S) --- , I s !Z 0

L-l o

-l si
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and output

y(t) [1 0]

x2 (t)j.

* This system was integrated forward (using the method of steps) to

obtain the analytic solution on [0,2]. Again, data was generated

at 101 equally spaced points by evaluating the true solution. This

data was used in the following examples; 01.1 - 01.2.

- ai
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EXAMPLE 01.1

This experiment is devoted to the estimation of the three

coefficients in the model. Therefore, we assume our model is

described by the second order equation

R(t) + w2x(t) + aok(t-i) + a x(t-l) u (t)
0 1

with initial data

x 0 (S)=l , k(S)0 ,- s 0

and output

y(t) x(t)

The problem is to estimate w, a 0 and a I .

Since the basic system is two dimensional for each N the approx-

imating systems for AVE and SPLINE is of dimension 2.(N + 1). In

order to keep the program size reasonably small (our objective is

to test the algorithms and not to develop computer codes) we

solved the approximating identification problems for N = 2, 4, 8

and 16. This allowed us to use the same code for scalar and two

dimensional systems without increasing the "size" of the code;

therefore keepir the computing cost minimal.

The start-up values for w* = 6, a* 2.5 and a* = 9 were
0 1

NO N,O N,O
WN 5.0 , a = 1.0 , a1  5.0.

L
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Tables 01.1.1 and 01.1.2 show the parameter estimates for

AVE and SPLINE, respectively. Observe that the N = 16 estimates

produced by the AVE procedure are such that the "relativet
leN1

error" isT- approximately 207.. On the other hand the N =16

SPLINE estimate has relative t1error of less than 1%.

* Figures 01.1.1 - 10.1.4 compare the data fits for N = 2. The

start-ups (ITR =0) are shown as well as the converged fits

(ITR = 10 for AVE and ITR =14 for SPLINE). Figures 01.1.5 - 01.1.6

show the converged data fits for N = 16. Note that in this

case both AVE and SPLINE converged after 4 iterations of the I4LE

algorithm. However, the SPLINE procedure provided a near perfect

data fit.

This example is typical of most of the vector systems that

were studied. Generally speaking, the SPLINE algorithm produced

better parameter estimates and data fits.

AVE

NN N aN
NWa0a1 le N

2 6.3864 -12.8383 4.2478 20.4769

4 5.7480 - 5.4170 7.3614 9.8076

8 5.6564 - 1.8301 9.7648 5.4385

16 5.7873 3.6873 6.6713 3.7287

6.0000 2.5000 9.0000

TABLE 01.1.1



S PLINE

N-N N N
N a 0  a IeN

2 6.1102 -5.7950 10.3718 9.777

86.0432 2.8791 9.2921 .7144

16 6.0079 2.5761 9.0591 .1431

y6.0000 2.5000 9.0000

TABLE 01.1.2
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200 lN2RV IT R--- 0
2 00 ---- ----......

K(t) + t) + aok(t-l) + alx(t-i) u 1 (t)

0I
1.20

• + +++ 
J

+
+ +

+ 
+ +++ + +

++ 
+ ++

+ + + -
0.40 + +

+ +4~t

4 -

+ + + 4 + 4

+ + ++
+ ++

++

- 0+ 
+

-0.41 + +4

+ +

+ +

+ +

+++ data U)* =6. 0 a* 2.5 a* - 9.0i

-- AVE Mode 1 2,0 =5.0 a20O 1.0 a 2,0 . 5.0

0. 1

FIGURE 01.1.1



-55-

2.00 1 N2R V IT-:

S_ (t) + 2() + aok(t-1) + a1 x(t-1) = u. 1 (t)

1.20 j: " .i +++ +

+ +j
+ +

+

'' + +

4
+

+

-0.40I 4+

+

+ 
-++

+4

++

-0.41+ +4

+ +

+

++

+++ data w* 6.0 a* -2.5 a* =9.0

+0

AV Mdl 21= 6.3864 a 2,0.12.838 a,1.4.2478

-2.00 4--t -- 4------4 I
0.00 0.40 0.80 1.20 12.0 P.[Th

FI E

FIGUREI 
I 

01.1.
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.11 1 N2SP 0
2 .00 -I I - -

K(t) + w2x(t) + ao*(t-1) + a x(t-l) =0U 1

1.20 T

4 + + +'"+

+ +

+ + +

4 + + ++++

+ + +

0.+ +
0 + ++ +

S+ 
+ +++ +

- -'+ ++

+ + ++++,. 4

+ +

I +
-0.14! [+ + 1 +t.+

+ +

+ + L
+ + -

+ +

-1.20 + ++ + +

+++

+++ data * - 6.0 a 0 2.5 a1 -9.0

- SPLINE Model w 2,0 2,05.
-2.00 ... . ...... .- a0  1 . , 5.0

0.00 0.40 0. 8 1.20 1i 60'

IG UR I [.1.3
FIGURE 01.1.31
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0 11_N23H Ii H- I
2. 110 F . T. --

+ w2x(t) + a0*(t-l) + a x(t-l) = U (t)
0. 1

1.20

+4-+

4 +

+ + +++

+ +

+

0.40
++

+++ +a +* 
=

4 4

+ 
+ 

4

+ o . . . + . . - .. . . . . . .. . . . ... .

O.O O + 4. 40I 01 O2

++

4 ~ +

-1 2 +

+++ +

+ 1

- SPLINE Model w
2 ' 6.1102 2,4.. -. 7950 a14. 10.3718

-00 - --J -IA--- -- -- --t------ -4

0.00 0.40 0.90 1 20 1J~ . flO

T I H',F
FIGURE 01.1.4
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01 1N 1 , I j
• I r -- [ T . . . - .. .. .. . 1

2(t) + 2 x(t) + aok(t-1) + alx(t-l) = u (t)

1.20

A +

+

+ 

+

0. 40 +

+

++-0.41 -

iP

-1.20 -- +

+ 
++

+++++

+++ data * - 6. 0 a 2.5 a* 9.0
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FIGURE 01.1.5
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1 I iN 15 __I

2. 0 0 -- - T

+ w 2+ X(t) +a 0k(t-1) + a IX(t-l) u. u(t)

1.20

0 11

-1.0 1

FIGUR0 0.1.6
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EXAMPLE 01.2

In this example we identify only the time delay r. The system

is assumed to be governed by the model

K(t) + 36x(t) + 2.5 k(t-r) + 9x(t-r) u (t)

with initial data

x 0 (s) 1 , 0(s) E 0 , -r s 0

and scalar output

y(t) x(t) ,

where r is the unknown delay.

This example proved to be very interesting. The start-up

r* = 1.0 was taken to be [

N,O_1. .r ' 1.2

At N 2, the AVE procedure did not converge (in fact estimates

for r were growing without bound), while the SPLINE algorithm

converged to the estimate r = 2.3476. At N = 4, SPLINE produced

the estimate r = .9830. However, for N = 4, AVE converged to the

estimate of r = 4.8694. For higher N, the SPLINE procedure pro-

duced better and better estimates. At N = 8 the AVE scheme pro-

duced a sequence of MIE estimates that oscillated between the values

.7000 and 1.3000. More precisely, the MLE iterations continued Lo
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* produce sequences similiar to

k.7113 , 1.0477 , 1.2755 ... .7082 1.0396 1.2811

j Consequently, the N = 8 AVE scheme never "converged"! At N 16,

both AVE and SPLINE converged to reasonable estimates of the

S I parameter r.

* rN,O
I This example was repeated using a start-up value of r 8

and the results were exactly the same. Table 01.2.1 contains a

summary of the convergence for this example. Figures 01.2.1 - 01.2.4

illustrate the start-ups and converged data fits at N = 16 for AVE

and SPLINE.

AVE SPLINE

^N ?N
N r leN1 N le NI

2 did not converge 2 2.3476 3.3476

4 -4.8694 5.8694 4 .9830 .0170

8 did not converge 8 .9939 .0061

16 .9274 .0726 16 .9987 .0013

r* 1.0000 r* 1.0000

TABLE 01.2.1

I
I
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1.

2.00 .T .-- .. .. . __

+ 36x(t) + 2.5k(t-r) + 9x(t-r) u (t) H I

1.20 ++ +
+ +
+ +}

-4 -
+ +,i

II

+- +

-0.41+

-.20 2
data r* 1.0

.0 -- AVE Model r6 1.2
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FIGURE 01.2.1
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O1o2NtIo I T9- L
2 .0 0 -- I I I I -

K(t) + 36x(t) + 2.5k(t-r) + 9x(t-r) = u W(t)

1.20

+ + 
-++

++

0.40 +

+ + 4

+ ++

+ + + + +

++++ + 4

4

+ + 4

+

-1 .20 -

-JJ

+++ data r*=1.0

AVE Model r .9274

-2 .00 i i -- 4 i i - -- -. .
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FIGURE 01.2.2
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2.00 0 2 I 1 I I H> 0

-(t) + 36x(t) + 2.5k(t-r) + 9x(t-r) u (t)

1.20
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+

+
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+
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+ ++
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01V2N1S INH L 
2 .0 0 --------- F 

K(t) + 36x(t) + 2.5k(t-r) + 9x(t-r) = Ul(t)

1.20

o. o / H

-0. '41

-1.20

.+++ data r* 1.0

16,4

- SPLINE Model r = .9987

- 2 . 0 0 j . . .- . --- -- - I

0.00 0.110 U.6 0 . 1(' 1 .60 P ri

TI ,
FIGURE 01.2.4
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ID MODEL 02

This model is the oscillator governed by the equation

K(t) + 16x(t) + 10(t-l) - 10x(t-l) = u (t)

with initial data

.- 0 o(S) _ 0 i , o(S) -0 , -1 S s 0

and scalar output

y(t) x(t)

4As before, data was generated at 101 equally spaced points by

solving the system analytically and evaluating the solution. This

data was used in the following examples; 02.1-02.2.

iL

'I
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EXAMPLE 02.1

Here we identify all three of the equation coefficients. The

model is described by

x(t) + 2x(t) + a0*(t-l) + a x(t-l) = Ul(t)

with initial data

x 0 (s) 0 1 (s) 0 , -l 1 s 0

and output

y(t) = x(t)

We seek to estimate the true parameters w* 4.0, a* = 10.0 and
0

a* = -10.0. Start-up values for these parameters were selected to

be

Nu N20 N 0  N,0
N , 20 a 0.0 , a1  = -9.0

Runs were made for N = 2, 4, 8 and 16. The results for AVE and

SPLINE are summarized in Tables 02.1.1 and 02.1.2, respectively.

Again, the error leNI is taken to be in the norm, and the

relative error at N = 16 is about 3% for AVE and less than 1%

for SPLINE.

Figures 02.1.1 - 02.1.2 show the N = 16 AVE data fits for the

start-ups and converged values of the parameters. Figures 02.1.3-

02.1.4 show the N 16 SPLINE data fits for the start-ups and

I
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Sconverged values of the parameters. The SPLINE procedure clearly

does better.

In this example (as well as others) we checked the CPU times

required for each run. The two schemes AVE and SPLINE basically

require the same amount of computer time for each iteration of the

MLE algorithm. For example, at N = 16, the AVE scheme used approx-

imately 17.75 sec/ITR while the SPLINE scheme used approximately

18.40 sec/ITR. Such figures are typical of all the runs.

AVE
^N ^N ^N

N a0  a1  eNI

2 did not converge

4 did not converge

8 3.4386 12.3634 -6.6389 .7128

16 3.9826 10.4641 -9.7997 .6818

*= 4.0000 10.0000 -10.0000

TABLE 02.1.1
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SPLINE

N w a0  a1I e N

2 3.8092 9.0371 -9.3642 1.7895

*4 3.9751 9.9323 -9.9241 .1685

8 3.9963 9.9511 -9.9978 .0548

16 3.9943 9.9920 -9.9812 .0325

y4.0000 10.0000 -10.0000

TABLE 02.1.2
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02. 1N 1B H I TH 0
3.00 - - ] 1 . T

- (t) + w2x(t) + a0  (t-1) + a x(t-l) - u (t)

+++ data w* - 4.0 a* 10.0 a* -10.0
0 1

2.~6, 1~-AWa6 , 0 .- J 16, 0
2.0AEMdl 2 00a=0-9.0

1.80 +

+' + +
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+

+ 
+

+4

++

+ + +

+ 
+

1.20 +

+ 
+

+++

__ + 4

++ 
+

0.+ ++

~4

++ 
4

+ 4++ +4 
" 

+ 
' + ]

0.600+
+ +J
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FIGURE 02.1.1
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02 01 Ni 816HT ~3

3.00 - I! - .

K(t) + w 2x(t) + a0i(t-l) + a x(t-i) U.l(t)

+ ++ data * = 4.0 a* 10.0 a* 10.0
0 0

-A16,3 16,3 16,3
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1.80 ....
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+
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~FIGURE 02.1.2
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I 02 i N 16 S IT F- L
0 O0 1 - ---- --- 

K(t) + 2 x(t) + aoi(t-1) + alx(t-l) u (t)

+++ data w* = 4.0 a* = 10.0 a* -10.0
0 1

2. 0 - SPLINE Model w16 4  3.9943 a16,4 = 9.9920 a16 '4  -9.9812"1

. 80

7 T5

FIGUR 0211
- 7
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EXAMPLE 02.2,

In this problem we seek to estimate the coefficients of the

delayed terms and the time delay itself. In particular, we assume

that the system is governed by the model

K(t) + 16x(t) + a k(t-r) + a x(t-r) = Ul(t),
0 1 .

with initial data

x0 (s) I , ko(s) 0 -r s 0

and output

y(t) = x(t)

and the true parameters to be estimated are a* = 10.0, a* -10.00 a 1

and r* = 1.0. Start-up values for each run were

NO NO NO

a 0  = .0, a' O  -9.0 , r = 1.2.

Convergence results for this example are summarized in Tables 02.2.1

and 02.2.2. At N = 16 the relative l error for AVE is approximately

3.5%, while the N = 16 SPLINE scheme produced a relative t, error

of less than 1%.

Figures 02.2.1 and 02.2.2 show the N = 4 converged data fits

for AVE and SPLINE, respectively. For N 8, the data fits are

nearly perfect and are not shown.
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AVE

N a 0  a1I r e N

2 did not converge

4 54.5124 -9.1876 2.4190 46.7439

8 19.4941 -9.4927 1.3506 10.3520

16 10.6433 -9.9089 .9998 .7346

S* - 10.0000 -10.0000 1.0000

TABLE 02.2.1

SPLINE
^N ^N ^N

N a0  a r ieNI

2 9.2585 -10.5360 1.0908 1.3683

4 10.0927 -10.0619 1.0076 .1622

8 9.9724 -10.0177 1.0010 .0463

16 9.9811 -10.0108 1.0017 .0314

* 10.0000 -10.0000 1.0000

TABLE 02.2.2

I
1.ir
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2 2 2 NWV _I ,
S- II T I. . . .---.-

x(t) + 16x(t) + aok(t-r) + aix(t-r) u (t)

+++ data a0 =10.0 a = -10.0 r* = 1.0
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3 0-

- (t) + 16x(t) + aok(t-r) + a x(t-r) u (t)

0.+ data a* = 10.0 a* = -10.0 r* 1.0
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++ +
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IL MODEL 03

This model is also a harmonic oscillator; however we shall use

both position and velocity as output data. In particular, the

model is governed by the equation

x(t) + 4x(t) + k(t-l) x(t-l) u

or in equivalent vector form,

~l(t) 1 1 (t)j FO 0 - 1 (t-l7) no
( L4oiL

x 2 (t) Xm(t 1 Lx 2 (t- 1j L2i

with initial data

(s) , -0 1 s 0

Lx~s L 0 j
2J0

and vector output

Y, Y(t) 1 0 Fl(t-

y(t) = y 1 tY = [ 1 X(j

2Y 2(t)] 0 1 x2 t
L

This system was f;olved analytically to obtain data at 101 equally

spaced points for Examples 03.1-03.4.
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EXAMPLE 03.1

For this problem we seek to estimate two of the systems co- 7 -

efficients. In particular, the model is assumed to be governed

by the equation

K(t) + 4x(t) + a0x(t-l) + alx(t-l) U.(t)

with initial data

x0 (s) 1 , c0(s) 0 -1 s 0

and vector output (both position and velocity)

y(t) =

LyE (t) j  xt)

The true parameters a* 1.0 and a* -1.0 were estimated using
0 1

start-up values of

NO N,O
a0 ' = .75 ,a 1  =-.75.

Runs with N = 2, 4, 8 and 16 were made and the convergence 4
results are summarized in Tables 03.1.1 - 03.1.2. Note thaL at.

N = 16, the AVE scheme produced parameter estimatt; considerably

worse (about 16% "relative tI error") than the N = 8 estimate YF

(about 7% error). The N = 16 SPLINE procedure gave estimates with

less than 2,". rulative error.
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Typical data fits are illustrated in Figures 03.1.1-03.1.8.

Figures 03.1.1 - 03.1.2 are the N = 8 AVE start-up data fits for

the position (Y(1)) and velocity (Y(2)), respectively. The con-

verged N = 8 AVE data fits are shown in Figures 03.1.2 - 03.1.4.

Figures 03.1.5 - 03.1.8 show the same data fits for the N = 8

SPLINE procedure.

AVE

N a 0  a IIe Ni

2 1.1437 - .8789 .2648

4 1.1504 - .9221 .2283

8 1.0951 - .9579 .1372

16 .7215 -1.0483 .3261

" 1.0000 -1.0000

TABLE 03.1.1

11

0L



SPLINE

N 80 e eNi

2 1.2474 -1.0991 .*65

4 1.0256 -1.0350 .0606

8 .9936 -1.0137 .0398

16 .9739 -1.0100 .0361

* 1.0000 -1.0000

TABLE 03.1.2
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O3° 1N8RV I TR 0
1 .5 0 I I I I I I

Y1

K (t) + 4x(t) + aok(t-1) + alx(t-) = U (t)

+ ++ data a*= 1.0 a* -1.0
0 1
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0 a1' -.75

+

.

,.+"

++

++

+++0.3 +-l

-0.0 ++.4
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03. 1N8 RV I TR- 0
2.00 -

K(t) + 4x(t) + aox(t-1) + alx(t-I) = Ul(t)

+++ data a 1.0 a* -1.0
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01

++ +

0
+

+4
+4

4
4

4
4

4
-- 4

. 41O ++

.0 0 0.00.01 201402 0

4
4

4
4

4
4

-7-1 ME

F 4
4

.+.

4+ .+ , 4
-- 4 

4

4 4+ + ++
4 4 +.+,,+++

4 4
FIUR 3.,

- 2 . 0 0 - .. . .. .. ... .. . ... .I



-84-

1.50 00i8V T~1
y1

~()+ 4x(t) + a k(t-1) + a x(t-1) = u(t)

..+. data a* 1.0 a* -1.0I

0 1 =

0.30

-0.11 1

-0.50 I
0.00 0.40O 0.80 1.20 1.60 2.00

T IM E

FIGURE 03.1.3
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03° 1N8FRV I TF- 10
2.00

Y2

R(t) + 4x(t) + aok(t-1) + a x(t-l) u (t)

+.+. data a0  1.0 a -1.0

1.20 8o0 1

AVE Model a8,0  1.0951 a ' 9579

++

++
+

++
++
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= = ..9.

-0.41 
-+
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++
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-2.00!- I ... - -
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TIME 

I 
FIGURE 03.1.4
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03. 1 N 8SP 11Hz: 0
1 .50 --- I I I

R (t) + 4x (t) + a 0 i(t-1) + a x(t-1) U. (t)

a* 10a* -.-++ data a . 1 =-.
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++++

++

++ +
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03a 1 N8SP I TF 0
2. 00 - r T 1 Y2T

K(t) + 4x(t) + aok(t-l) + a x(t-l) u (t) a

+ + d t * - 1 . 0 a * - . 0

+++ data 0
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.03 1 N8S P ITi i
1.50 - - - - --r T i 1 - T

Y1

K(t) + 4x(t) + a i(t-1) + aix(t-1) = u (t)

+++ data a 1.0 *= -10

1. 8,12 8,12
SPLINE Model a 0  .9936 a 1  = 1.0100-- 1

0.70

0.30

-0. 11

-0.50 I I_
0.0 o0.40o 0. 80 1. 20 1 .60 2.0o0

TIME
; FIGURE 03.1.7
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03. 1 NP "- T -
, * 2.00 - T- .- -

K(t) +4x(t) + aoi(t-l) + a x(t-1) = u (t)

I ++ + data a*_ =,.0 a*° = .0
1.20 8,12 8,12

I - SPLINE Model a0  .9936 a1
1  1.0100

jI -

I 0.0I
I

-0.41

-1.20

-2.00

0.00 0.40 0.8U 01.0 .60

FIGURE 03.1.8
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EXAMPLE 03.2

In this example we attempt to estimate all of the system co-

efficients. Consequently, the model is assumed to be of the form

2
x(t) + U x(t) + a 0 k(t-i) + alx(t-I) u t)

with initial data

x 0 (s) 1 , (s) 0

and output

y(t)

The true parameters w* = 2.0, a* = 1.0, a* -1.0 were estimated
0

using start-up values of

N,ONONO
3.o , a 0

, = .75 , aNO = -.75

This example is again typical in that the SPLINE scheme pro-

duced better estimates than the AVE scheme (although the N = 2

SPLINE run did not converge). The convergence of the parameter

estimates is summarized in Tables 03.2.1-03.2.2. The N - 16

results show that the relative t. error is about 5X for AVE and 1.1

for SPLINE. The data fits for N = 8 and 16 were nearly perlict

fits for both AVE and SPLINE. Consequently, no plots are given.

Ii
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AVE

NN -N
^N a0 a1  leNi

2 1.2398 3.8802 1.3463 5.9867

4 1.7711 2.1018 - .2201 2.1106

8 1.8955 1.5372 - .6522 .9895

16 1.9404 .9505 - .9033 .2050

y 2.0000 1.0000 -1.0000

TABLE 03.2.1

SPLINE

^N ^N ^N
a0  a1  eN!

2 did not converge

4 2.0320 .9324 -1.1136 .2132

8 1.9995 .9956 -1.0124 .0173

16 1.9903 1.0149 -.9840 .0406

" 2.0000 1.0000 1.0000

TABLE 03.2.2

I
i
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£XAMPLE 03.4

For this example we seek to estimate an initial function,

two system coefficients and the time delay. In particular we

assume that the initial position is a constant but unknown value

and hence the model takes the form

t) + 4x(t) + a0k(t-r) + alx(t-r) u (t)

with (partially unknown) initial data

x0 (s) - C , o (s) 0 , -r s < 0

and vector output

x(t)

y(t)

The parameters C* 1.0, a* - 1.0, a * -1.0 and r* 1.0 wor.

estimated using start-up values

NO N,0 N,0 N,O
C, 0.0, a .0O 9, a 1

°  .9, r .9.

For each N 2, 4, 8 and 16, the AVE scheme did not converge.

At N = 2 the SPLINE scheme did not converge; howe'ver, at N = 4, S

and 16 the SPLINE procedure converged tIo good estimatet of the

parameiters. This example was also run wiLth other start-ups itnd

it was observed that unless the, start-up,; were reasonably e-lost
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V

4 (i.e. as above) the SPLINE scheme also diverged. The parameter

estimates produced by the SPLINE scheme are listed in Table

03.4.1. The error leNi listed in this table is the "ZI error"
^NN I , ̂ N

leNI = II(P1( I r 11aarN +la1 1aL- 0 10

= ic* tN, + r*_-N + I + la*-^ N

Observe that the relative error at each N = 4, 8, 16 is between 1

and 2 percent.

Figures 03.4.1-03.4.2 show the N 4 SPLINE data fits. Note

that the MLE required 29 iterations to converge.

_ _ _SPLINE

'N -N ^N ^N
N r ao a1  leN

2 did not converge

4 .9960 .9440 1.0135 -1.0085 .0820

8 .9998 .9999 .9937 -1.0137 .0203

16 1.0011 1.0156 .9874 -1.0131 .0434

* 1.0000 1.0000 1.0000 -1.0000

TABLE 03.4.1
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1.50
YI i;T

K(t) + 4x(t) + a 0 (t-r) + I x(t-r) u. 1 (t) Ii

x0 (s) C, kO(s) 0
L.

1. 10I.I

0.70

0.30

-0. 11
. .. data C* 1.0 r* 1.0 a 1.0 a* 1
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ID MODEL 04

This model is the oscillator considered in ID MODEL 03, with

noise added to the output. In particular, the system is governed

by the equation

K(t) + 4x(t) + x(t-l) - x(t-l) = U(t),

with initial data

x0 (s) I , i0 (s) 0 , -1 s 0,

and (noisy) output

y(t) { +

(t) v2 (t)

where vi(t) (i= 1,2) is a computer simulated normal random var-
1

*iable with zero mean and standard deviations of 0.1 on the position

data (vI) and 0.2 on the velocity data (v2).

The random variables v.(t) (i = 1,2) were generated using
>1

routine GGNQF of the IMSL library (see IMSL Users Guide) and

added to the analytic solution x(t) and k(t) of the delay equation

to produce data (yi,i = 1,2,..., 101) at 101 equally spaced times

on [0,2]. These values produced rather noisy data, which was used

in following examples; 04.2 -04.3.
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I EXAMPLE 04.2

I For this example we estimate two system coefficients and the

time delay. The model is assumed to have the form

i(t) + 4x(t) + a0i(t-r) + a x(t-r) = Ul(t)

with initial data

x (s) 1 , o(S) 0 , -r s t 0

and output

y(t)

For N 2, 4, 8 and 16 the approximating identification problem

was formulated and a version of the MLE algorithm described in

[9 was used to estimate the parameters a*-- 1.0, a* = -1.0 and

I r* = 1.0. Start-up values for each run were set at

aN,O 75,aN,O 75,rN,O 8
a0 - .75 , aI  = -.75 , = .8.

Except for the N = 2 AVE run, each run converged to reasonable

estimates for the parameters. Again the SPLINE scheme produced

better results. The N = 16 AVE estimates give about 147 relative

t 1 error, while the N = 16 SPLINE estimates have about 17 relative

t I error. The convergence results for this problem are summarized

in Tables 04.2.1 and 04.2.2.

1.
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Typical data fits for this problem are illustrated in Figures

04.2.1- 04.2.4. Note that the data produced by adding the simulated

noise is indeed very "noisy". However, at N - 8 both AVE and SPLINE

do a "good" job of fitting the data. In fact, the N = 8 converged

data fits provide nearly perfect matches to the system outputs with-

out the noise.

AVE

N 0 1 r

2 773.3040 -.9699 65.6704 837.0045

4 2.2051 -.9832 1.8078 2.0297

8 1.3959 -.9947 1.2547 .6559

16 .7740 -1.0664 1.1142 .4066

*= 1.0000 -1.0000 1.0000

TABLE 04.2.1

*, SPLINE

N a a r lei

2 1.0813 -1.0254 .8233 .2834

4 1.0001 -1.0283 .9533 .0751

8 .9881 -1.0195 .9937 .0377 IT

16 .9850 -1.0156 1.0013 .0319

y* 1.0000 -1.0000 1.0000

TABLE 04.2.2
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* EXAMPLE 04.3

*In this problem all of the system coefficients and the time

delay are estimated. In particular the model is assumed to have

the form

(t) + w2x(t) + ao:c(t-r) + a x(t-r) u1 (t)

with initial data

x0(1) = , 0 (s) 0 , -r _ s 0

and vector output

tx(t)1

(t)J

Start-ups for the true parameter w* = 2.0, a* = 1.0, a = -1.0,
0 1

r* - 1.0 were set at

N,O =/-, aN,O .75 a 'O rN Ow = a = .7=aK -.75 , r = .8,
0 1

and runs were made for N = 2, 4, 8 and 16.

For N = 2 neither AVE nor SPLINE converged. At N = 4 the AVE

scheme converged. However, the N = 4 MLE procedure for the SPLINE

approximation never really converged. The MLE algorithm produced a

sequence of parameters that oscillated between two values. These

two values are displayed in Table 04.3.2. Observe that either of
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the two parameter estimates obtained by the SPLINE scheme is

better than the AVE estimate. At N -8 both AVE and SPLINE con-

verged, while at N =16 the SPLINE procedure again produced two

values for each parameter and the MLE algorithm oscillated between

- - these values.

The data fits for this example are typical of the previous

examples. Figures 04.3.1 -04.3.4 illustrates the N = 8 converged

data fits. The data fits at N = 16 for AVE and SPLINE are almost

the same, and for the SPLINE scheme either of the two parameters

given in Table 04.3.2 produces essentially the same data fits.

AVE

N ,N ^N ~ NN

a0  1__

2 did not converge -

4 1.6475 -2.2109 .1635 .8603 4.7269

8 1.8221 1.6184 -.4164 .8807 1.3799

16 1.7647 1.2959 -.3349 .7405 1.1963

1= 2.0000 1.0000 -1.0000 1.0000

TABLE 04.3.1
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SPLINE
i i i

N a 0  a1  leNI

2 did not converge

4 2.1246 .6354 -1.4428 1.4526 1.3846

4 2.1191 .6633 -1.4263 1.4161 1.2982

8 1.9671 1.0641 - .9164 .9381 .2425

16 1.9436 1.1155 - .8410 .9074 .4235

16 1.9736 1.0529 - .9373 .9573 .1847

y 2.0000 1.0000 -1.0000 1.0000

TABLE 04.3.2

-'.1

I
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ID MODEL 05 I

This model is the second order oscillator considered in ID I
MODEL 01, with vector output. However, data was generated on a

longer time interval by numerically integrating the equations. In

particular, the system is governed by the delay equation

i: ,K(t) + 36x(t) + 2.5k(t-1) + 9x(t-1) = u.1 (t)

' I with initial data

X 0 (S) _= 1 , 0 (S) 0 ,-1 s • 0

and vector output

y IWt)t

[y2(t)_j L (t)j

This system was numerically integrated (using a modified 4th order

scheme) to obtain the solution on the interval [0,5]. Data was --

generated at 101 equally spaced points (i.e. 20 data points per

unit interval) using this numerical solution.

As a rough check of the numerically produced data, the

numerical solution and the analytic solution were compared on the

interval [0,2]. The numerical solution agreed exactly (i.e. to

eight decimal places) with the analytic solution, giving some in-

dication that the data for this model is reasonably good. I

I
I!



1 As a final commnent, we mention that the numerical algorithm

I - used to integrate the delay equation is completely unrelated to

any of the approximation schemes used in the identification

algorithms. Consequently, we are not using data generated by the

algorithm that we are attempting to study.
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EXAMPLE 05.1

For this example we seek to estimate the time delay and two

system coefficients. The model is assumed to be of the form

K(t) + 36x(t) + aok(t-r) + alx(t-r) = u (t)

with initial data

x 0 (s) -1 0 (s) 0 -"r ! s !c 0

and vector output

x(t)

Yi~t)

Recall that in this example we have data generated for 5 seconds,

i.e. on the interval [0,51, at 101 points. The parameters to be

estimated are r* = 1.0, a* = 2.5 and a* = 9.0. Start-up values

for each run were

N,O NO N,O Lr =.9 , a' = 2.2 , a1  9.5
i0

Other start-up values were attempted and the algorithms were found

to diverge if the start-up errors were too large and in some cases

the algorithms converged to parameters different than r*, a*, a*

This again shows that there can be a lack of global identifiability.

Runs for N 2, 4, 8 and lb were made for both AVE and SPLINE.
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I For low N, the AVE scheme did not converge. However, both AVE and

SPLINE converged for larger N and produced reasonable estimates of

the parameters. These results are summarized in Tables 05.1.1 and

05.1.2. Observe that at N = 16 the SPLINE procedure produced

estimates with approximately 27. relative tl error, while the N =16

AVE estimates have relative 4 error greater than 22%.

I The data fits for this example are very interesting. This

example is very dynamic and oscillatory on the interval [0,5].

However, at N - 16 both AVE and SPLINE produce fairly good data

fits, with the SPLINE scheme matching the data better than AVE.

Figures 05.1.1 -05.1.4 show the iteration 0 and converged data

fits for the AVE scheme. Figures 05.1.5 -05.1.8 illustrate the

same thing for the SPLINE procedure.

AVE

N r 0 aI ____

2 did not converge

4 did not converge

8 .2492 2.8002 - 3.8982 13.9492

116 .9106 1.7439 10.9570 2.8025

I - 1.0000 2.5000 9.0000

TABLE 05-1.1
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SPLINE

^N ^N ^
N r a80 81 le NI

2 did not converge

4 .6812 -2.3261 11.7017 7.8466

8 .9985 2.9163 8.9459 .4719

16 1.0000 2.6016 9.0872 .1888

= 1.0000 2.5000 9.0000

TABLE 05.1.2

'1
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ID MODEL K1

This is a model with continuous kernel. The system is governed

by the equation

0
if (t) =-3x(t-1) -Sx(t+s)ds + u 1l(t)

with initial data

x y(t) x(t)

This equation can be transformed to a system of two equations with

no integral term (see pages 63-64 of [9 ]) and solved using the

method of steps. The analytic solution was obtained by this pro-

cedure and data was generated at 101 equally spaced points on [0,2].

This data was used in the following examples; KI.1, KI.4.

*1i

I
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EXAMPLE K1.l

In this example we attempt to identify the kernel by assuming

that it is constant function with unknown value. Therefore, the

model is of the form

0
k(t) = -3x(t-l) + kJO x(t+s) ds + u 1 (t)

with initial data

x 0(t) =1 , -l s • 0

and output

* y(t) = x(t) L

The constant k* = -1.0 is to be estimated. Runs at N 2,4,8,16

were made with the start-up of

4 NO
k N ' = .0

This example is interesting for several reasons. It is an

example that contains a distributed delay and it is the only

example we have run where the AVE scheme produced better parameter

estimates than the SPLINE scheme. Table Kl.l.l illustrates the

convergence of the parameter estimates for AVE and SPLINE. FiguresIU
Kl.l.l and K1.1.2 compare the N = 8 converged data fits for AVE and

SPLINE, respectively. Observe that even though the N - 8 AVE scheme

produced a better parameter estimate, the N - 8 SPLINE scheme does a

i =I
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much better job of fitting the data.

AVE SPLINE

N le NI N kN leNi

2 -1.2953 .2953 2 -1.2679 .2679

14 -1.0765 .0765 4 -1.0827 .0827

18 -1.0156 .0156 8 -1.0301 .0301

16 -1.0058 .0058 16 -1.0177 .0177

k* -1.0000 k* -1.0000

TABLE K1. 1. 1
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EXAMPLE KI 4

In this example we estimate two system coefficients and the

time delay. As before, the kernel is estimated by assuming that

it is an unknown but constant function. Therefore, the model is

assumed to be of the form

x(t) alx(t-r) + k So x(t+s) ds + u.l(t)

-r

with initial data

SO(S) -r 9 s 0

and output

y(t) x(t) .

The true parameters a* = -3.0, kk -1.0 and r* = 1.0 we estimated

using start-ups of

N,O kN35 O NO
a1  = -3.5 , k ='0  -1.5 , r ' = 1.5

Runs were made for N = 2,4,8 and 16. The AVE scheme did not con-

verge for N = 2 and 4. However, for N - 8 and 16 the AVE scheme

converged but produced rather poor parameter estimates. The SPLINE

scheme converged far each N = 2,4,8,16 and for N a 4 produced good

parameter estimates. The numerical results for this problem are

summarized in Tables K1.4.1 and K1.4.2.

Figures K1.4.1- K1.4.4 compare the N 8 AVE and SPLINE data

i
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fits. In particular, Figures K1.4.1 and K1.4.2 show the N 8 AVE

start-up and converged data fits, respectively. Figures KI.4.3

and K1.4.4 show the same thing for the SPLINE procedure.

AVE

N r a1  leNi

-2 did not converge --

4 did not converge -

8 .8802 .2182 -4.1641 2.0657

16 .9383 -.3806 -3.5535 1.2346

y = 1.0000 -1.0000 -3.0000

TABLE K1.4.1

SPLINE

^N N "NNral 1 t eNj

2 .9100 - .4376 -3.4478 1.1002

4 .9896 -1.0087 -3.0580 .0771

8 1.0018 -1.0390 -2.9953 .0455

16 1.0042 -1.0410 -2.9841 .0611

= 1.0000 -1.0001 -3.0000

TABLE K1.4.1
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K 1 L4N8FAV _ H - 'I2. 0 ] 11 T -- T. . --

k x(t) ax(t-r) + k 0 x(t+s) ds + UI(t)
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1.20- 8,4 8 .02
AVE Model a = -4.1641 r - 8802 .2

0.40

++
++

++ +

- 0 . L11 
-

-1.20

-2 .00 - --- + . t. . - t .. - . .
0.00 0.4k0 .80 1.20 I.6(1 r .00

TIME
FIGURE KI.4.2



-132-

2 . JO T .. .. . - - I I

*2 0 D

x(t) a (x -r) + k S0 x(t+s) ds + u (t) - 1
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IA' IINI "

2 .0? I F " " -i . . . I I2. )C
k(t) =aix(t-r) +s k 0x(ti-s) ds + u. (t)

+ + + data a* -3.0 r* = 1.0 k* -1.0

1.20 86
SPLINE Model a8 '6  -2.9953 8,6 1.0018 k _-1.0
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Summary Remarks

The major lesson of our experience with the AVE and SPLINE

identification procedures is that SPLINE is generally superior and

commonly displays near quadratic convergence. It has been observed

N
that the error function E can have multiple relative minima. In

order to solve the IDN problem we have used a maximum likelihood

i estimator (MLE), which in the case of a scalar measurement, is

* equivalent to the usual quasi-linerization (QL) procedure for

N
minimizing E . Conditions that guarantee convergence of the QL

* procedure are rather stringent (see [ 7]) and, in fact, are not

satisfied in our examples. In applications it would seem prudent

to employ a hybrid algorithm for the IDN problem, wherein one

would initially use a method that guarantees descent and then

employ QL only in the neighborhood of a minimizing point.

I'

20
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6. The optimal ccntrol problem: numerical examples.

In this sectio'n we present numerical results for a number of

examples of the optimal control problem (OC). The two schemes

AVE and SPLINE were employed to compute approximating optimal

controls u A and u for several values of N chosen to illustrate

convergence properties. The linear systems examples given here

are essentially the same as some of the examples considered in

detail in [ 6 ]. For these examples the analytic solution u* of the

optimal control problems can be found in §3 of that report and we

shall not redrive those solutions here. Only one (C8) of the

linear examples presented below was not considered specifically

in [61'; however for the particular case detailed here the optimal

control can be computed by using the maximum principle for delay

systems in the same manner as was done for Example 10 of [ 6 .

Since the report [ 6 J is rather complete and easily obtained, we

shall feel free to use the results presented in that technical

report without elaborate comment or discussion. For the motivation

behind our choice of some of the particular examples presented

here and in C 6 ], the interested reader can consult [ 6 .

* We also present below our numerical findings for two nonlinear

examples. The theory for use of the AVE approximations with a

restricted but reasonable class of nonlinear system optimal cotntrol

problems is developed in [ 13. Consideration of the arguments givei

there along with details of the SPLINE scheme development in [ 8
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should convince the reader that a corresponding theory for the

SPLINE scheme can be developed in a straightforward manner.

womb.
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EXAMPLE Cl

The first system is given by the scalar enuation

x(t) x(t -1) + u(t), 0 t 3

with initial data

x(s) 1, -I s O

and the payoff is chosen as

J(u) = 5[x(3)]2 + u(s)]2 ds

0

The optimal control u* is given by (see page 11 in [ 6 ]

2
6(-(t-2) /2 -3/23, 0 t 1,

u*(t) 6(t - 3) , 1 t : 2

-6 , 2 t ;3,

where 6 370/[6(l 4319/3)) _ .5745. The optimal cost is

J* - J(u*) - 1.7715.

Table (Cl.l) compares J and J* for each of the two schemes

AVE and SPLINE. The example is somewhat typical in that (as

one might expect from theoretical investigations- both methods are

basically first order, but the estimates for SPLINE indicate that

one should expect slightly faster convergence for this scheme)

SPLINE converges faster than AVE. Note that the error for SPLINE

at N - 4 is less than the error for AVE at N - 32.
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Table (CL.2) contains the CPU times for each run of the

conjugate-gradient algorithm. As shown, the time to make each run

is very reasonable for both schemes, although SPLINE requires

slightly more time per run. These times were typical for all the

scalar examples.

Tables (Cl.3) and (Cl.4) compare the controls UN and i to u*
A S

for N = 4, 8, 16, 32. We observe th;t SPLINE provides A better

approximation to u* than AVE. It is interesting to note that SPLINE

* 1is not as monotone in its convergence as AVE.

i 1
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I AVE SPLINE

N .N N N 1NN_j.[

4 1.72491 .0466 4 1.77320 .0017

8 1.74750 .0240 8 1.77179 .00029

16 1.75939 .0121 16 1.77164 .00014

32 1.76551 .00599 32 1.77159 .00009

J* = 1.7715 J* f 1.7715

TABLE C1.1

AVE SPLINE

N CPU Sec N CPU Sec

4 23.8 4 30.6

8 28.9 8 39.1

16 39.1 16 59.5

32 56.1 32 93.5

TABLE C1.2

J_4
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AVE

tie 4 8_ _ ~ 16 ___32 ____

0.00 -2.0050 -2.0067 -2.0075 -2.0086 -2.0108

*-0.25 -1.7340 -1.7386 -1.7400 -1.7405 -1.7450

0.50 -1.4994 -1.5069 -1.5092 -1.5092 -1.5081

0.75 -1.2962 -1.3064 -1.3112 -1.3124 -1.3106

1.00 -1.1197 -1.1317 -1.1402 -1.1448 -1.1500

1.25 -0.9662 - .9774 - .9877 - .9955 -1.0054

1.50 - .8335 - .8397 - .8463 - .8527 - .8618

1.75 - .7214 - .7201 - .7170 - .7151 - .7181

2.00 - .6324 - .6272 - .6179 - .6082 - .5745

2.25 - .5708 - .5720 - .5708 - .5706 - .5745

2.50 - .5385 - .5527 - .5623 - .5683 - .5745

2.75 - .5291 - .5504 - .5621 - .5683 - .5745

3.00 - .5286 - .5504 - .5621 - .5683 - .5745

TABLE C1.3
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I

SPLINE

tim_.e -4  8 ^ 16 -32 u_

0.0 -2.0177 -2.0109 -2.0109 -2.0109 -2.0108

0.25 -1.7447 -1.7439 -1.7413 -1.7416 -1.7415

0.50 -1.5053 -1.5070 -1.5081 -1.5084 -1.5081

0.75 -1.3083 -1.3094 -1.3105 -1.3106 -1.3106

1.00 -1.1506 -1.1501 -1.1495 -1.1491 -1.1500

1.25 -1.0085 -1.0027 -1.0061 -1.0054 -1.0054

1.50 - .8591 - .8648 - .8629 - .8615 - .8618

1.75 - .7123 - .7147 - .7199 - .7178 - .7181

2.00 - .6095 - .5928 - .5844 - .5805 - .5745

2.25 - .5759 - .5746 - .5749 - .5746 - .5745

2.50 - .5816 - .5750 - .5748 - .5746 - .5745

2.75 - .5694 - .5774 - .5745 - .5746 - .5745

3.00 - .5149 - .5418 - .5574 - .5658 - .5745

TABLE C1.4

LIi__
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EXAMPLE C2

In this control problem, which is the same rs Exampl, 3B of

6', we take as our system the scalar equation

x~) ~x(t-l) + u(t) , 0 t 2
2

with initial data

x(s) 1 I -I s 0

The payoff is given by

J(u) = Ex(2)] + k0 du(s)]2 ds

0

The optimal control is given by (see page 56 in [ 6J)

85[(r/2)(1-t) + 1] 0 f, L 1,u*(t)

I !c t ;2 ,

where 6 z!- .9967 (see page 12 of [ 6]) and the optimal cost is

J* = J(u*) --_ 2.6787

Table (C2.1) summarizes the convergence properties of JN to

J* and compares the AVE and SPLINE schemes. Again we observe an

improvement by using the SPLINE scheme. Tables (C2.2) and (C2.3)

contain the control values for AVE and SPLINE. A graphical

comparison of UA s and u* is presented in Figure C2.1.

S!
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IAVE SLN

jN JN IJa"J* I N JNj_~

4 2.6765 .0022 4 2.6827 .0040

8 2.6891 .0104 8 2.6801 .0014

16 2.6894 .0107 16 2.6792 .0005

32 2.6864 .0077 32 2.6790 .0003

3* =2.6787 3* 2.6787]

TABLE C2.1

AVE

.4^ 16 ,32
time -U u u u ____

0.00 -2.6371 -2.6122 -2.5962 -2.5834 -2.5623

0.25 -2.1679 -2.1568 -2.1583 -2.1629 -2.1709

0.50 --1.7783 -1.7653 -1.7645 -1.7703 -1.7795

0.75 -1.4593 -1.4324 -1.4086 -1.3933 -1.3881

1.00 -1.2112 -1.1762 -1.1363 -1.1005 - .9967

1.25 -1.0410 -1.0240 -1.0069 - .9975 - .9967

1.50 - .9521 - .9709 - .9837 - .9910 - .9967

1.75 - .9263 - .9646 - .9831 - .9910 - .9967

12.00 - .9248 - .9645 - .9831 - .9910 - .9967

TABLE C2.2
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S PLINE

te .4 8 16 -32

0.00 -2.5732 -2.5679 -2.5643 -2.5626 -2.5623

0.25 -2.1750 -2.1652 -2.1725 -2.1708 -2.1709

0.50 -1.7649 -1.7858 -1.7822 -1.7789 -1.7795

0.75 -1.3669 -1.3778 -1.3927 -1.3871 -1.3881

1.00 -1.0907 -1.0465 -1.0236 -1.0129 - .9967

1.25 - .9986 - .9966 - .9976 - .9968 - .9967

1.50 -1.0102 - .9987 - .9974 - .9968 - .9967

1.75 - .9904 -1.0028 - .9968 - .9968 - .9967

2.00 - .8955 - .9409 - .9672 - .9815 - .9967

TABLE C2.3
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EXAMPLE C3

In this example the system is two dimensional and is described

by

L-o7
d1 j +f ]F +~

Lt X2 (t L oj Lx ti L lj Lx tJ L i
where 0 t < 2 and the initial data is chosen as

xl~ ~ I f- ,i S 0.I1X~ 2 ds)'0 .

The cost functional is given by

J(u) =  [xl( 2 )]2 + 0u(s)]2 ds

This system is equivalent to the second order equation (sue Examplk'

5 in [6 ])

y(t) + y(t-l) u(t),

where xl(t) = y(t) and x2 (t) - y(t). The optimal control is given

by (see pages 18 and 66 of [6 ])

(J2) (3 - t ) 0 - t 1,

u*(t) -

w 6(2 -- t) 
1K t h 2,

where 6 ::!--.1915, and the optimal cost is
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J*= J(u*) E 15.9574

Table C3.1 illustrates the convergence of JN to J* for AVE

and SPLINE. It is interesting to compare the CPU times (Table C3.2)

for this two dimensional example with Table (Cl.2) for the scalar

problem, Example Cl. Note that the total CPU time increased only a

few seconds. Tables (C3.3) and (C3.4) compare uA and QN to W'.

Note that 32 is almost identical (to 3 places) to u*!

SI

AVE SPLINE

N iN ^'N NN 3NJ*lJ J -J*I NJNI ~

4 17.3450 1.3876 4 16.0149 .0575

8 16.7215 .7641 8 15.9721 .0147

16 16.3604 .4030 16 15.9618 .0044

32 16.1649 .2075 32 15.9594 .0020

J* = 15.9574 J*= 15.9574

TABLE C3.1

-Jd



-148-

AVE SPLINE

N CPU Sec N CPU Sec

4 25.5 4 28.9

8 28.9 8 40.8

16 34.0 16 62.9

32 54.4 32 105.4

TABLE C3.2

AVE

e4 ^8 ^16 ^32time u_ u u u u*

0.00 -4.8886 -4.8486 -4.8210 -4.8044 -4.7872

0.25 -4.7369 -4.7186 -4.7063 -4.6982 -4.6875

0.50 -4.4217 -4.4065 -4.3988 -4.3947 -4.3883

0.75 -3.9406 -3.9124 -3.8976 -3.8919 -3.8896

1.00 -3.3083 -3.2590 -3.2275 -3.2099 -3.1915

1.25 -2.5562 -2.4926 -2.4499 -2.4239 -2.3936

1.50 -1.7279 -1.6711 -1.6359 -1.6164 -1.5957

1.75 - .8670 - .8360 - .8180 - .8082 - .7979

2.00 0.00 0.00 0.00 0.00 0.00

TABLE C3.3
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I

I

SPLINE

^4 ^8 -16 ^32~t ime U_ __u_ u_ U*

0.00 -4.8629 -4.8047 -4.7918 -4.7885 -4.7872

0.25 -4.7443 -4.7024 -4.6908 -4.6884 -4.6875

0.50 -4.4094 -4.3940 -4.3906 -4.3889 -4.3883

0.75 -3.8599 -3.8852 -3.8880 -3.8893 -3.8896

1.00 -3.1497 -3.1794 -3.1883 -3.1906 -3.1915

1.25 -2.3598 -2.3835 -2.3909 -2.3930 -2.3936

1.50 -1.5463 -1.5829 -1.5925 -1.5950 -1.5957

1.75 - .7381 - .7834 - .7942 - .7970 - .7979

2.00 0.00 0.00 0.00 0.00 0.00

TABLE C3.4
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EXAMPLE C4

Consider now the three dimensional system

7x1 (t)~ 0 1 07Fxl(t-l)7 0~
dt x (t) 0 lx(t-l)~ +i 0 u(t)

Lx3(t ) J 0 0 0 L )-!

on the interval 0 < t 5 3. We choose as initial function the

, constant vector Xl (S) 1- o -0"
JI

x1 2s 5 (S .s!

X3 2 (S) L 0 -0

and the cost is defined by

J(u) (.9)5)rx1(3)] 2 + [u(s)] 2 ds

0

This is the same problem as Example 6 in the report [ 6 J. The

optimal control is found to be (see page 70 of [6 J)

S6(I - t) 2  0 !c t f.

u*(t)
S0.0 1 I t --3

where & -.4975, and

J*-4.9751

A numerical summary for this problem is presented in Table

(C4.1)-(C4.4) and Figure (C4.1). The total CPU time is quite

reasonable, even for this 3 dimensional system. Note that for
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3 SPLINE it was necessary to carry 3N out to 6 places in order to

compute the difference IJ -I
AVE SPLINE

N L i -* 1 1 1 1 1

4 4.9216 .0595 4 4.9754 .0003

4 8 4.9504 .0248 8 4.9752 .0001

1"16 4.9635 .0116 16 4.9752 .0001

32 4.9696 .0055 32 4.9752 .0001

J*= 4.9751 J*= 4.9751

TABLE C4.i

AVE SPLINE

N CPU Sec N CPU Sec

4 40.8 4 54.4

8 51.0 8 81.6

16 69.7 16 129.2

32 107.1 32 221.0

TABLE C4.2

I
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AVE

4im __8 ,^16 232

0.00 - .7201 - .6159 -.5577 -.5274 -.4975

0.25 -.4914 -.3958 -.3402 -.3102 -.2798

0.50 -.3153 -.2326 -.1830 -.1548 -. 1244

0.75 -.1871 -.1212 -.0819 - .0591 -.0311

1.00 - .1002 -.0537 -.0281 - .0145 0.0

1.25 - .0469 -.0190 -.0065 -.0017 0.0

1.50 - .0183 -.0049 -.0009 -.0001 0.0

1.75 -.0055 -.0008 0.00 0.00 0.0

2.00 -.0011 -.0001 0.00 0.00 0.0

2.25 - .0001 0.00 0.00 0.00 0.0

2.50 0.00 0.00 0.00 0.00 0.0

2.75 0.00 0.00 0.00 0.00 0.0

3.00 0.00 0.00 0.00 0.00 0.0

TABLE C4.3
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SPLINE

^4 8 16 -.32t ime u u U U __

0.00 - .4932 - .4961 - .4966 - .4968 - .4975

0.25 - .2767 -. 2791 -. 2793 - .2794 - .2798

0.50 -. 1256 -. 1245 -. 1242 -. 1242 -. 1244

0.75 -. 0397 -. 0322 -. 0313 -. 0311 -. 0311

1.00 -. 0052 -. 0016 -. 0005 -. 0002 0.00

1.25 -. 0015 -. 0003 0.00 0.00 0.00

1.50 -. 0005 0.00 0.00 0.00 0.00

1.75 -. 0001 0.00 0.00 0.00 0.00

2.00 0.00 0.00 0.00 0.00 0.00

2.25 0.00 0.00 0.00 0.00 0.00

2.50 0.00 0.00 0.00 0.00 0.00

2.75 0.00 0.00 0.00 0.00 0.00

*3.00 0.00 0.00 0.00 0.00 0.00

TABLE C4.4
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EXAMPLE C5

I This example involves a two dimensional system with two

controls. The equation is (see Example 7 in [ 6]) given by

__ x t 1 02 u Wt

d+I I
xl(t 0 x (t 1 0 2 W

L LL L J

where 0 t ! 2, and the initial data is defined by

2(s)jl

The cost function is taken as

2
J(u) =  t[xi(2)]2 + [x2(2)] 2 ] + . £[()]2 + [u2(s)]2  ds.

The optimal control is (see pages 25 and 73 of C 6]) found Lo

be

u*(t) u* (t) '

U*(t)

-J

W- where

S+ (1 -t) , 0 t l,

ul*(t)

, I t -. 2,

and

u6 , 0 t 2,

L
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with

= -0. 1880 and 6 a! -0.8718

The optimal payoff has value

J* -- 1.4017.

The results for this problem are summarized in Tables (C5.1)-(C5.5),

and Figures (C5.1) - (C5.2).

AVE SPLINE

N_ I-J, N jN jN _J*

4 1.3620 .0397 4 1.4072 .0055

8 1.3839 .0178 8 1.4035 .0018

16 1.3940 .0077 16 1.4022 .0005

32 1.3983 .0034 32 1.4019 .0001

J* 1.4017 J*= 1.4017

TABLE C5.1

r. "J

T"

I



I

J -157-

II
AVE -u 1

^me4 ^8 ^16 -32timeu u u ul

1 1 1 1

0.00 -1.0250 -1.0383 -1.0489 -1.0546 -1.0598

0.25 - .8239 - .8261 - .8320 - .8368 - .8418

0.50 -. 6342 -. 6219 - .6181 -. 6195 .6239

n.75 - .4639 - .4373 - .4188 - .4087 - .4060

1.00 - .3236 -. 2919 -. 2656 -. 2449 - .1880

1.25 - .2248 - .2051 - .1927 - .1872 - .180

1.50 - .1725 - .1748 - .1797 - .1836 - .lbsO

1.75 - .1574 - .1712 - .1793 - .1836 - .1880

2.00 - .1564 - .1711 - .1793 - .1836 - .1880

TABLE C5.2

AVE - u 2

e4 -8 16 ^32
time u2  u 2  u 2  u2  u

2_ 2 2 2

0.00 - .8558 - .8655 .8695 - .8709 - .8718

0.25 - .8558 - .8655 - .8695 - .8709 - .8718

0.50

0.75

1.00

1.25

1.50

1.75 - .8558 - .8655 - .8695 - .8709 - .8718

2.00 - .8558 - .8655 - .8695 .8709 - .8718

TABLE C5.3
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i 1SPLINE - uI
^4 ^8 ^16 ^32

t ime uI1 u1 u I  uI1 Ul*

0o00 -1.0531 -1.0641 -1.0607 -1.0597 -1.0598

0.25 - .8340 - .8398 - .8415 - .8411 - .8418

0.50 - .5980 - .6227 - .6226 - .6224 - .6239

0.75 - .3732 - .3931 - .4045 - .4035 - .4060

1.00 - .2202 - .2066 - .1978 - 195 -. 18

1.25 - .1677 - .1781 - .1832 - .1856 - .1880

1.50 - .1716 - .1800 - .1831 - .1856 - .1880

1.75 - .1698 - .1807 - .1830 - .1856 - .1880

2.00 - .1533 - .1695 - .1776 - .1827 - .1880

TABLE C5.4

SPLINE - 2*

^4 ^8 ^16 ^32
time u2 u 2  u2 u2 u2

0.00 -.8959 -.8882 -.8783 -.8744 -.8718

0.25 -.9021 -.8864 -.8787 -.8745 -.8718

0.50 -.9067 -.8916 -.8790 -.8741

0.75 -.9031 -.8893 -.8786 -.8745

* - 1.00 -.8956 -.8875 -.8782 -.8744

1.25 -.8963 -.8881 -.8782 -.8744

1.50 -.9022 -.8866 -.8781 -.8744

1.75 -.8810 -.8904 -.8776 -.8744 -.8718

2.00 -.7972 -.8355 -.8516 -.8610 -.8718

TABLE C5.5
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EXAMPLE C6

j We consider a control problem with system given by th scalar

equation

: ,-(t) = x(t) + x(t- 1) + u(t), 0 t 2,

and initial data

x(s) 1 -1 _ s 0 0

The cost function is defined by

2
2 2

J(u) - 3x(2)] + [u(s)] ds

0

The optimal control (see Example 4 on pages 14 and 63 in [ 6 ]) is

given by

S 2-t l-t
6 [e + (i- t)e - ] , 0 t I 1

u*(t)

2-t

where 5 - -.3932 and

J* - 3.1017

The numerical results for this example are summarized in Tables

(C6.1)-(C6.3). Observe again that the SPLINE scheme gives b(tter

approximations to the payofj and control than AVE.
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AVE SPLINE

* N N N NSN-J*

4 3.0084 .0933 4 3.1108 .0092

8 3.0554 .0462 8 3.1047 .0031

16 3.0797 .0219 16 3.1030 .0013

32 3.0915 .0101 32 3.1026 .0009

J* 3.1017 J* = 3.1017

TABLE C6.1

AVE

^4 ^8 16 ^32 Utm___ __ __ u___ ___ __**1

time u- u u U _

0.00 -3.9668 -3.9702 -3.9726 -3.9734 -3.9742

0.25 -2.8512 -2.8662 -2.8754 -2.8807 -2.8870

0.50 -2.0497 -2.0672 -2.0759 -2.0808 -2.0863

0.75 -1.4759 -1.4917 -1.4964 -1.4968 -1.4986

1.00 -1.0684 -1.0843 -1.0883 -1.0868 -1.0688

1.25 - .7835 - .8042 - .8154 - .8221 - .8324

1.50 - .5876 - .6136 - .6298 - .6389 - .6483

1.75 - .4517 - .4765 - .4904 - .4975 - .5049

2.00 - .3515 - .3711 - .3819 - .3875 - .3932

T[ABl E C6.2

p[
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SPLINE

44 8 6 '32
t time u u u u U

0.00 -3.9717 -3.9737 -3.9735 -3.9733 -3.9742

0.25 -2.8895 -2.8854 -2.8870 -2.8864 -2.8870

0.50 -2.0873 -2.0894 -2.0871 2.0858 -2.0863

0.75 -1.5001 -1.49b8 -1.4998 -1.4981 -1.4986

t1.00 -1.0949 -1.0821 -1.0757 -1.0728 -1.0688

1.25 - .8330 - .8326 - .8326 - .8323 - .8324

1.50 - .6535 - .6488 - .6484 - .6482 - .6483

1.75 - .5012 - .5070 - .5048 - .5048 - .5049

-2.00 - .3590 - .3727 - .3819 - .3872 - .3932

TABLE C6.3
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EXAMPLE C7

This example is an interesting two dimensional problem for

which the SPLINE scheme is clearly superior to the AVE scheme. It

is the same as Example 9 in r 6]. The equation isL::::t) 1: x 2L2: 00] FI(t1) FO]ut
x2(t L -tIx 2 (t- l

where 0 t 2, and the initial condition is given by

x1(s) W

Lx -i K 0 j - 11

The equation is the vector formulation of the second order scalar

equation

Y(t) + (t - )+ y(t) = u(t) ,

which describes an harmonic oscillator with delayed damping. Thec

cost function is given by

2

J(u) = 5 [xi(2)] 2 + u(s)] 2 a.

0

-The optimal control (see pages 31 and 81 'n L 61) is given by{ 6Sill ('- L) .(l-,)sin(t-l), U(tt 0 l
u*(t)=

6 sill (2 - L) I f Lt 2,
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5 where 6 2.5599. The optimal cost is

~I
J* - 3.3991

J This example demonstrates just how much Improvement one can obtain

by using the SPLINE scheme in place of AVE.

In order to check the convergence rates of the two algorithms,

we assume that

N N - J *  K /N)

and

S^N U 2- K2 (I/N)A.N u UL 2
L2

where K,, K2 and are constants. The convergence rate, R, can be

used to compare the two schemes. For example, an algorithm with

2.0 provides faster convergence than an algorithm with 1.0.

Solving the above equations for $, we find that

e le (N/'7 2N) ( N/1;2N )

Consequently, can be estimated from the numerical results. Tabic

C7.1 indicates the computed value of for N _ J*. Note that is

approximately one for AVE and two for SPLINE. he values of

lu N _ u* used in Table C7.4 wer estimated by using a simple- :u 2L u

Euler scheme for the integration. Again, the convergence rate g

is approximately one for AVE and two for SPLINE.

Mimi
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AVE SPLINE

-'N -'N_*JN 3N IJN~jI I N 3 N I N:j.I

4 2.1515 1.2475 .78 4 3.5354 .1363 1.94

8 2.6711 .7280 .88 8 3.4345 .0354 1.91

16 3.0035 .3956 .94 16 3.4085 .0094 1.75

32 3.1929 .2062 --- 32 3.4019 .0028

J* = 3.3991 J* - 3.3991

TABLE C7.1

AVE

e 4 ^8 ^16 ^32time u u u u u*

0.O0 1.0403 1.138b 1.1931 1.2212 1.250b

0.25 1.4574 1.6371 1.7451 1.8038 1.8645

0.50 1.7277 1.9522 2.0898 2.1664 2.2467

0.75 1.8163 2.0447 2.1839 2.2628 2.3501

1.00 1.7136 1.9110 2.0259 2.0882 2.1541

1.25 1.4369 1.5839 1.6644 1.7052 1.7449

1.50 1.0259 1.1209 1.1727 1.1997 1.2273

1.75 .5313 .5788 .6052 .6191 .6333

2.00 0.00 0.00 0.00 0.00 0.00

TABLE C7.2
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I _

SPLINE1 4 -8 16 2
time i U u u u_

0.00 1.3669 1.2786 1.2579 1.2527 1.2506

0.25 1.9770 1.8937 1.8717 1.8666 1.8645

0.50 2.3287 2.2683 2.2530 2.2485 2.2467

0.75 2.3805 2.3611 2.3527 2.3511 2.3501

1.00 2.1609 2.1552 2.1545 2.1543 2.1541

1.25 1.7446 1.7440 1.7447 1.7451 1.7449

1.50 1.2018 1.2210 1.2258 1.2271 1.2273

1.75 .5902 .6232 .6308 .6328 .6333

2.00 0.00 0.00 0.00 0.00 0.00

TABLE C7.3

AVE SPLINE
N N

-u * - N - U Iu *L_ 
- -- --" 2 2--

4 .5650 ..95 4 .0954 1.96

8 .2931 .92 8 .0245 1.95

16 .1553 .97 16 .0063 1.75

32 .0795 --- 32 .0018 ----

TABLE C7.4

1

!
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• ~_ C N-4 "
2.50 I ] .... .I
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S- + '
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+/ 0
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i

'-4

S

0.50 -- u4

0.00 /± +,

0.00 n.1? .80 1.20 1.60 2.00

TIME
FIGURE C7.1
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3 EXAMPLE C8

Except for the initial data this problem is the same as

Example 10 in [ 6]. The system is described by the two dimtnsional

J "equation

() 0 1 x2(t)I Fo 07 7 1 t-l 

dtKlt)l 7O I] (to (
L L ( L L

where 0 t s 2, and initial data given by

x Is)] Flo~
1 -- s 0

x2(s) 
0

L

The system is the vector formulation of the second order scalar

equation

Y(t) + (t) + y(t-1) = uMt

The payoff is taken to be

J(u) = f[xi(2), x 2 (2)] L2L 2J } + [u(s)2 ds

'0

2 2 2= [[xi(2)3 + [x2(2)] + [ , Eu(s)f 2 ds

0

Proceeding exactly as in [ 6] with ; replaced by C 101
(see pages 36-45), one finads that the optimal control is given by
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4L- )e t - 2 + [2 -36-(i-)tle t - 1 6 6(t+2)- 0 tl ,5

u*(t)

("-6)e + 6 (, 1 t s72,

where 6 - -.2593 and :2 5.2262. The resulting optimal cost is

J* :- 19.7479

The convergence of J to J* is summarized in Table (C8.1).

Again, the convergence rates (i.e. , ) agree with the expected

theoretical values. The convergence of N to u* is described by

-4 "4
Tables (C8.2)-(C8.4) and plots of uA, u S and u* are given in

Figure (C8.1)

AVE SPLINE

N NN N aNN-j,

4 17.9646 1.7832 .87 4 19.9843 .2364 2.39

8 18.7745 .9733 .95 8 19.7929 .0450 1.72

16 19.2439 .5039 .99 16 19.7616 .0137 1.48

32 19.4935 .2543 --- 32 19.7528 .0049 ----

J* 19.7479 = 19.7479

'FABLE C8. 1

1 _-- ... ... ... . .. ..... ... . -n nn nin nl ... . .. . .......
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U

AVE

'.4 .8 '.16 '.32
time u U U u u_*

0.00 -. 9029 -. 8782 -. 8712 -. 8701 -. 8710

0.25 -.3412 -.2688 -.2307 -.2133 -.1993

0.50 .2526 .3612 .4276 .4636 .4975

0.75 .8643 .9879 1.0680 1.1170 1.1745

1.00 1.4926 1.6054 1.6739 1.7132 1.7587

1.25 2.1585 2.2469 2.2927 2.3139 2.3319

1.50 2.9139 2.9886 3.0277 3.0476 3.0678

1.75 3.8368 3.9187 3.9645 3.9883 4.0128

2.00 5.0122 5.1115 5.1673 5.1962 5.2262

TABLE C8.2

SPLINE

^4 ^8 ^16 ^32
time u u u u u*

0.00 -.8775 -.9746 -.9297 -.9010 -.8710

0.25 -.1303 -.2995 -.2441 -.2231 -.1993

0.50 .6421 .4472 .4667 .4785 .4975

0.75 1.3224 1.1445 1.1595 1.1662 1.1745

S1.00 1.9007 1.7394 1.7560 1.7575 1.7587

* 1.25 2.5345 2.3528 2.3485 2.3399 2.3319

1.50 3.3597 3.1217 3.1068 3.0871 3.0678

1.75 4.2533 4.1425 4.0785 4.0463 4.0128

2.00 4.9126 5.0619 5.1643 5.1955 5.2262

'TABLE C8.3
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AVE S PL INE

N N
22

4 .0944 1.69 4 .0875 2.52

8 .0293 1.81 8 .0153 2.26

16 .0083 1.90 16 .0032 t.84

32 .0022 32 .0009 '

TABLE C8.4

-j.

i

iu
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EXAMPLE C9

1his c'xamp'.u is the same as Example 13 in [ 6 ] (with

1, s>, page 97 of L 6 ). The system is governed by thc

equat ion

d r1 ~± 1 1 1 ~ 1 t
d t t - + '

with 0 < t - 2 and initial data

1Is V 10 10I- , -1 s 0 .

x2(s) L 0

The cost function is given by

=[x (2)]2 + Lx2(2)]2 + S 2[Ul(S)2 + [u (s)] 2 ds

12 ~ 0~ 1 ~ LU 2~0

Although the optimal control and optimal cost have not been

computed, the numerical results given in the following tables

are similar to the previous examples. Again it appears

that SPLINE provides improved convergence properties over AVE.
-j
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AVE SPLINE ~ -

N SN QT2 NjNi N 3N -2NJN

4 16.2927 .7615 4 18.0819 .1814

8 17.0542 .4084 8 17.9005 .03482

1.6 17.4626 .2014 16 17.8657 .0090

32 17.6640 --- 32 17.8567---

TABLE C9.1

AVE u 1
^4 8 16 .^32

time u U U U

0.00 -2.3842 -2.5442 -2.6432 -2.6920

0.25 -1.9485 -2.0417 -2.1157 -2.1601

0.50 -1.4369 -1.4407 -1.4639 -1.4947

0.75 -. 8927 - .7962 - .7311 - .7000

1.00 -. 3798 - .2166 - .0816 .0247

1.25 .0235 .1658 .2578 .3042

1.50 .2562 .3092 .3221 .3224

1.75 .3284 .3271 .3239 .3224

2.00 .3331 .3273 .32-19 .3224

TABLE C9.2



-176-

AVE - u2

e 4  ^8  ^16 .32t ime u u u u

0.00 -.3729 -.3578 -.3541 -.3540

0.25 .1412 .1975 .2273 .2407

0.50 .6665 .7536 .8068 .8354

0.75 1.1900 1.2891 1.3527 1.391.,

1.00 1.7101 1.7994 1.8512 1.879

1.25 2.2453 2.3141 2.3453 2.3573

1.50 2.8403 2.8999 2.9258 2.93o'

1.75 3.5615 3.6321 3.6650 3.0788

2.00 4.4788 4.5707 4.6139 4.6321

TABLE C9.3

SPLINE -u

time^4 8 ^16 32

0.00 -2.7993 -2.7564 -2.7430 -2.7366

0.25 -2.2589 -2.2041 -2.2079 -2.2025

0.50 -1.4849 -1.5456 -1.5454 -1.5400

0.75 - .5920 - .6683 - .7219 - .7100

1.00 .0951 .1992 .2532 .2783

1.25 .3615 .3467 .3292 .3256

1.50 .3542 .3351 .3295 .3256

1.75 .3336 .3370 .3294 .3256

2.00 .3040 .3162 .3196 .3206

TABLE C9.4
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I

SPLINE -u 2

4 ^8 -16 ^32
time u u u u

0.00 -.3499 -.3416 -.3488 -.3520

0.25 .3107 .2604 .2622 .2555

0.50 .9737 .9025 .8753 .8649

0.75 1.5378 1.4784 1.4520 1.4428

1.00 1.9986 1.9456 1.9266 1.9185

1.25 2.4949 2.4122 2.3521 2.3716

1.50 3.1407 2.9946 2.9646 2.9528

1.75 3.8248 3.7720 3.7109 3.6988

2.00 4.2899 4.4311 4.5281 4.5842

TABLE C9.5
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EXAMPLE C1O

This is a nonlinear optimal control problem. Although the

basic idea has been developed only for linear systems, much oi tit

theory has been extended to a general class of nonlinear examples

see 2]). The system is given by the equation

(t) = x(t)sin[x(t)] + x(t- 1) + u(t), 0 < t 2

with initial data

x(s) 1 10 -1 < s 0

Th cost function is:

2

J x 2,×2  + [ .[x(s)1 2 + iu(s ds
0

Values of JN are given in Table (ClO. I). This problem is such that

J;' is relative "flat". Consequently, the values of JN and thec

controls u changed very little as N - +a . Since the optimal

control u* is not known analytically and u were essentially the

same for N ,- 4, we did not give tables for u .

AVE SPLINE

N 2N jN NN I 2NI N.- N J - N J ,-

4 162.020 .0010 4 162.113 .0720

8 162.019 .0010 8 162.041 .0300

16 162.018 .0030 16 162.011 .0080

32 162.015 ----- 32 162.003

lABIL' C 10.1

I~k --LA&MU
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I EXAMPLE C1I

This is a nonlinear example with the same dynamics as

EXAMPLE C10, but different initial condition. The systtem is

again given by

!r
i' t)=x(t)sin[x(t)] + x(t -1) + u(L), 0 t 2

with initial data

x (s) = cz(s) , -I 1 s S 0

where

lO(s + 1) , -1 s . -,

Y(s)

-lOs , s -- 0.

The cost functional is given by

J(u) = K[x(s)] 2 + S2 ([x(s)J2 + [u(s)] ds

0

This nonlinear problem is more interesting than Example C10.

Although the optimal control is not known analytically, the

numerical runs indicate that the sequence Nj is "converging" to

an optimal control. If one applies the maximum principle to the

nonlinear control problem, there are two boundary conditions that

the optimal "sLiate" and multiplier must satisfy. Using

these boundary conditions as a che.ck for the
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approximating optimal control problem, we found that the N 16

SPLINE procedure produced final values of the "state" and

"multipliers" that most nearly matched the boundary conditions.

In view of this fact and the convergence pattern illustrated in

Tables CII.I-CII.3, it is reasonable to believe that the N = 16

SPLINE run gives a good estimate of the optimal control.

A4 ,4 16Figure Cll.1 compares plots of uS uA with U . The plots of' S

N
uS for N 8, 16 and 32 are almost identical.

AVE SPLINE 1
N2N N N *2N N

N J J N J -

4 1.9919 .1845 4 2.5406 .0179

8 2.1764 .1341 8 2.5227 .0013 --

16 2.3105 .091)7 16 2.5240 .0010 L
32 2.4012 32 2.5230 -

TABLE C11.l

ii

-Ji
1.

n
[1
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tieAVE

i 4 ^8 ^16 ^32
time u_. u u__ __

0.00 -2.3013 -2.3082 -2.3073 -2.3033

0.25 -2.0915 -2.1804 -2.2375 -2.2706

0.50 -1.8241 -1.9856 -2.1114 -2.1972

0.75 -1.4673 -1.5752 -1.6470 -1.6906

t 1.00 -1.1190 -1.1447 -1.1417 -1.1317

-I

1.25 - .8349 - .8173 - .7891 - .7697

1.50 - .6208 - .5966 - .5761 .5669

1.75 - .4580 - .4400 - .4321 .4329

2.00 - .3233 - .3125 - .3098 -..3142

TABLE CI1.2

SPLINE

4 8 16 ^ 32time u u U- u

0.00 -2.331 -2.3024 -2.3017 -2.2967

0.25 -2.3707 -2.3230 - .3156 -2.3101

0.50 -2.2820 -2.3034 -2.3106 -2.3126

0.75 -1.6921 -1.7294 -1.7404 -1.7424

1.00 -1.0787 -1.1002 -1.1041 -1.1037

1.25 - .7160 .7427 - .7462 - .7497

1.50 - .5727 - .5644 - .5588 - .5624

1.75 - .4978 - .4591 - .4502 .4451

2.00 - .3960 - .3496 - .3559 .3265

[ABLE CI1.3
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Summary Remarks

In examples C7 and C8 we presented some estimates for the rates

of convergence of -N - J* and u N U. In these cases we found that

f Ithe AVE scheme provided essentially linear convergence, while SPLINE

convergence was essentially quadratic. In view of some known

- !theoretical facts these results are not unexpected. Specifically,

in [ 5j it is shown that for fixed control and sufficiently re-

stricted initial data,we have z - z is 0(1/ ) where B = 1 for AVE

and B = 2 for SPLINE. For the linear regulator problem (both OC

and OCN) the optimal control can be generated by state feedback.

If one assumes that the feedback "parameters" for OCN also converge

to the feedback "parameters" for OC (see Delfour [lO]) like (1/N )!

then it follows that u 411* convergence is 0(I/ )

Additionally, elementary calculations then reveal that one should

have 3N _ J* is also O(I/NB). For the first-order (piecewise linear)

spline based method SPLINE, the results presented here, taken with

other numerical experiments that we have performed and reported else-

where (see '8 '), are strong evidence that tile mtthod SPLINE

is essentially second order ($ = 2) when used with regulator-type

optimal control problems involving linear delay systems. (This is

not too surprising when one reviews the literature on finite-element

methods and investigates such phenomena as super convergence tor

"coercive problems" or "superconvergence at nodes".) The AVE scheme,

on the other hand, appears to be at best only first order ( 1)
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in these problems.

As a further point of comparison we note that SPLINE yields a

better approximation for a given value of N in almost every example

that we have considered (here and elsewhere). Observe that in

many of the control examples (Cl- C4, C6- C8) the results for

SPLINE at N = 4 are better than those obtained with AVE for N 32.

While the SPLINE scheme is slightly more tedious to impliment

and takes a little more computer time because of the matrix systems

that must be solved (see the Remark at the end of 3), all tht

evidence would seem to imply that SPLINE is a superior method to

AVE in control problems of the type we consider he':e.

For control problems with nonlinear systems, the numerical

findings to date are not as dramatic or conclusive (in part perhaps

because analytic solutions are not available). In addition to thL'

two examples (CIO, ClI) reported here, numerical studies with other

nonlinear systems tend to support the conjecture that SPLINE will

generally be as good as or better than AVE for nonlinear problems.

-j

&
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